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Abstract 
Voltage stability is a critical aspect of modern power system operation, directly influencing system 
reliability, operational efficiency, and protection against grid collapse. Voltage instability often 
arises due to heavy reactive power demand, insufficient local reactive compensation, and weak 
transmission infrastructure, especially under high loading or fault conditions. To address these 
challenges, advanced optimization techniques are often employed for reactive power planning and 
voltage profile enhancement. Hence, a comparative analysis of two nature-inspired metaheuristic 
algorithms—Particle Swarm Optimization (PSO) and Salp Swarm Algorithm (SSA)—in mitigating 
voltage instability of the IEEE 9-Bus test system is done. The aim is to compute the optimal 
placement and sizing of reactive power compensation using shunt capacitors. The objective function 
is formulated to minimize overall voltage deviation from the nominal value (1 p.u.), and ensure 
computational efficiency of the algorithms. Both algorithms were evaluated on three main 
performance metrics: voltage loss minimization, convergence characteristics, and recommended 
capacitor sizes (MVAr ratings). PSO algorithm showed faster convergence towards near-optimal 
solutions, making it suitable for time-constrained applications. On the other hand, SSA showed 
superior performance in recommending more economical MVAr injection sizes. But SSA achieving 
comparable voltage profile improvements, resulted with slightly higher iteration counts. Original 
contribution of this work lies in the direct comparison of PSO and SSA for increasing voltage 
stability under the same system conditions, offering insights into their relative strengths. The 
significance of this study is its potential to guide power system engineers in selecting appropriate 
optimization methods based on computational and economic trade-offs. Future research can extend 
this approach to meshed and large-scale systems, integrating uncertainty in load demand and 
renewable generation. 
Key Words: Particle Swarm Optimization, Salp Swarm Algorithm, Voltage Stability, IEEE 9 Bus 

System 
 

1. INTRODUCTION 

Voltage instability is a growing concern in power 
systems because of networks becoming more 
complex from renewable energy integration, 
associated increased implementation of power 
electronics and increased demand. Maintaining a 
firm voltage profile ensures power system 
stability and efficiency with reliable power 
supply which is essential in modern society. 
Voltage instability often arises due to excessive 
reactive power demand, insufficient local 
compensation, and sudden disturbances such as 
faults or load changes on long transmission lines. 
If not addressed promptly, voltage instability can 
lead to cascading failures, system blackouts, and 
significant economic losses (Mokred & Wang, 
2024). 

Power systems are inherently nonlinear due 

to the interdependence of voltages, currents, and 
power flows across a large number of buses. 
Traditional optimization techniques—such as 
gradient-based or linear programming 
methods—often fail to converge or become 
trapped in local optima when modelling such 
nonlinear, non-convex problems (Ayalew, 
Hussen, & Pasam, 2019). These limitations have 
sparked interest in metaheuristic algorithms, 
which are better suited for navigating complex 
solution spaces without requiring gradient 
information. 

Among these, Particle Swarm Optimization 
(PSO) and Salp Swarm Algorithm (SSA) have 
shown promise in various power system 
applications. PSO is a population-based 
stochastic optimization technique inspired by the 
social behavior of bird flocking, known for its 
fast convergence. SSA, a more recent algorithm 

https://portal.issn.org/resource/ISSN/2958-8456
https://portal.issn.org/resource/ISSN/2958-8464
mailto:05210012.jnec@rub.edu.bt*1


Zorig Melong: A Technical Journal of Science, Engineering and Technology Vol. 8 Issue 2 (2025) 

P-ISSN (2958-8456) E-ISSN (2958-8464) 135 

inspired by salp chain dynamics in oceanic 
swarming, is appreciated for its balance between 
exploration and exploitation in high-dimensional 
search spaces. These techniques are particularly 
effective in tuning control variables such as 
reactive power injections (MVAr compensation), 
generator voltage setpoints, and tap-changing 
transformers to maintain voltage stability 
(Valencia-Rivera et al., 2024). 

To benchmark these algorithms, the IEEE 9-
bus test system is selected for its simplicity, yet 
representative behavior of real-world 
transmission networks. It provides a clear 
framework to study voltage stability issues under 
different loading and compensation scenarios, 
making it a widely accepted standard in voltage 
control studies. 

Despite a large body of work on voltage 
stability and reactive power optimization, few 
comparative studies have systematically 
evaluated PSO and SSA under the same system 
and objective function. The knowledge gap lies 
in understanding their relative performance in 
terms of voltage profile enhancement, 
computational efficiency, and optimal reactive 
compensation sizing. 

This study aims to fill this gap by 
formulating a voltage deviation minimization 
problem and solving it using both PSO and SSA 
under identical test conditions. The central 
hypothesis is that while both algorithms can 
enhance voltage stability, SSA may yield more 
economical compensation sizes, whereas PSO 
may offer faster convergence. The results of this 
study are expected to provide insights into 
selecting appropriate metaheuristic techniques 
for voltage stability enhancement in practical 
power system applications. 

2. METHODOLOGY 

2.1 Overview of Approach 

This study uses both MATLAB and DIgSILENT 
PowerFactory to simulate and optimize the IEEE 
9-bus power system. MATLAB was used to 
implement and run the optimization 
algorithms—PSO and SSA—while DIgSILENT 
provided the platform for high-fidelity power 
flow simulations, network modelling, and 
voltage profile visualizations. 

2.2 Test System: IEEE 9-Bus 

The IEEE 9-bus test system consists of: 
• 3 generator buses (Slack: Bus 1; PV: Buses 2 

and 3) 

• 6 load buses (Buses 4–9) 
• Standard system base: 100 MVA, 60 Hz 
• Line and transformer impedances as per 

IEEE standard test case data. 
• Load types: Predominantly inductive, 

contributing to lagging power factor and 
voltage drops. 
A summary of bus data, line parameters, and 

load/generation distribution is modelled in Fig 3. 

2.3 Load Flow Analysis 

Power flow analysis is performed using Newton-
Raphson method in DIgSILENT. Initial bus 
voltages, real/reactive power injections, and line 
flows are extracted and exported to MATLAB 
for optimization. 

2.4 Objective Function 

The objective is to minimize the total voltage 
deviation from 1 p.u. across all load buses: 
Minimize 

𝐹 =# |𝑉! − 1.0 ∣
"

!#$
 

Subject to: 
• 0.95 ≤ V% ≤ 1.05 p.u. (voltage limits) 
• 0 ≤ Q&'(,%  ≤ Q*'+  (capacitor rating 

constraints) 
Where: 

•  V%	:  Voltage magnitude at bus i 
• Q&'(,% : MVAr compensation at bus i 
• Q*'+:	Maximum allowable MVAr (set 

to 10 MVAr in this study) 

2.5 MVAr Sizing Logic 

Capacitor sizes are treated as continuous 
optimization variables. The reactive power 
injection improves local voltage based on the 
simplified relation: 

∆𝑉	𝛼	
𝑄,-.
𝑉

 
The algorithm iteratively adjusts MVAr values to 
bring voltages within optimal range using the 
defined objective function. 

2.6 Simulation Setup 

• DIgSILENT: Used to model the IEEE 9-bus 
system and perform base case load flow. 

• MATLAB: Used for running optimization 
loops, applying capacitor injections, after 
obtaining loadflow results in DIgSILENT  

• Integration Flow: 
1. Initial load flow in DIgSILENT 
2. Export line data and bus data to 

MATLAB 
3. Run PSO/SSA optimization 
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4. Reconfigure optimized MVAr values 
to DIgSILENT for final voltage 
analysis 

3. OPTIMIZATION TECHNIQUES 

3.1 Particle Swarm Optimization 

PSO is a swarm-based optimization technique 
mimicking the communal actions of birds and 
fish. Every particle in the swarm represents a 
personal solution and the best one is updated as 
the global solution of the overall swarm. The 
system is initialized by random particle positions 
and velocities, where updates are administered 
by cognitive and social coefficients. The inertia 
weight parameter is attuned to balance 
exploration and exploitation. The global optimal 
setting is calculated using velocity and position 
updates of each particle across the iterations. 
Though PSO is acknowledged for its quicker 
convergence, occasionally local optima occur 
from premature convergence (Houssein, E. H., 
et. al, 2021). 

 
Fig.1: Flowchart for Particle Swarm Optmization 

3.2 Salp Swarm Algorithm 

SSA imitates the behavior of individual salps in 
the swarm by classifying as leaders and followers. 
Leaders explore the search space and 
consequently followers update positions. SSA 
delivers a sensible exploration-to-exploitation 
balance, decreasing chances of local optima 
entrapment. Contrasting PSO, SSA dynamically 
fine-tunes its search behavior from swarm 
interactions besides environmental conditions, 
providing more resilience to stagnation in 
intricate solution spaces (Abualigah, L., et. al, 
2021). 

 
Fig.2: Flowchart for Salp Swarm Optmization 

4. FORMULAE 

Particle Swarm Optimization 
𝑣!(𝑡 + 1) = 𝜔. 𝑣!(𝑡) + 𝑐$. 𝑟$:𝑝𝐵𝑒𝑠𝑡! −
𝑥!(𝑡)@ + 𝑐/. 𝑟/:𝑔𝐵𝑒𝑠𝑡! − 𝑥!(𝑡)@									(1𝑎)  

𝑥!(𝑡 + 1) = 𝑥!(𝑡) + 𝑣!(𝑡 + 1)																				(1𝑏) 

Particle Swarm Optimization (PSO) 
• Swarm Size: 30 particles 
• Max Iterations: 100 
• Inertia Weight: w=0.7 
• Acceleration Coefficients: c1=c2=1.5 
Steps: 

1. Initialize particle positions (MVAr 
values) and velocities. 

2. Evaluate fitness using voltage deviation. 
3. Update particle velocities and positions 

using above formulae. 
4. Apply power flow to get new voltages, 

update fitness. 
5. Repeat until convergence. 

• Salp Swarm Algortihm 
	𝑃𝑜𝑠𝑖𝑡𝑖𝑜𝑛01-213 (i) = 
𝐶𝑢𝑟𝑟𝑒𝑛𝑡	𝑃𝑜𝑠𝑖𝑡𝑖𝑜𝑛01-213(𝑖) + rand() 
× (ub −𝐼𝑏 )× ( 	𝑇𝑎𝑟𝑔𝑒𝑡.45!6!4" −
𝑃𝑜𝑠𝑖𝑡𝑖𝑜𝑛01-213(𝑖))																						(2𝑎) 

Where: 
rand()= 0 −1 
ub−𝐼𝑏 =1.05−0.95, 
Salp Swarm Algorithm (SSA) 

• Swarm Size: 30 salps 
• Max Iterations: 100 
• Coefficient c1: Linearly decreases from 

2 to 0 
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Fig. 3: Load flow analysis without MVAr devices  

Fig.4: Load flow analysis with 3 PSO 
recommended MVAr devices 
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Fig.5: Load flow analysis with 3 SSA 
recommended MVAr devices 

 

Steps: 
1. Initialize salp positions (MVAr values). 
2. Leader salp updates position relative to 

food source (best fitness): 
3. Follower salps update using above 

formulae 
4. Perform power flow with updated MVAr 

positions. 
5. Repeat for all iterations. 

5. LOADFLOW ANALYSIS 

The load flow analysis of the IEEE 9 bus system 
is obtained in Fig. 3. Then, the PSO algorithm 
recommended 7 MVAr, 8 MVAr and 8 MVAr at 
buses 2,4 and 7 are configured in Fig. 4. 
Afterwards, the SSA algorithm recommended 
MVAr requirements of 5.4, 3.2 and 4.5 at bus 
numbers 2,6 and 9 respectively is configured in 
Fig. 5. 

6. RESULTS 

This section analyses the performance of PSO 
and SSA algorithms for optimal capacitor 
placement in IEEE 9-bus transmission system, 
focusing on voltage stability, convergence 
behaviour, and computational efficiency. The 
findings are based on the simulation results 
presented in Tables 1 and 2, and are supported by 
voltage profiles and convergence plots shown in 
Fig. 6,7 and 8 respectively. 
Table 1 Load flow analysis results and MVAr 

recommendations 

Bus Vpu 
MVAr 
(PSO) 

MVAr 
(SSA) 

Vpu 
(PSO) 

Vpu 
(SSA) 

1 1.04 0 0 1.04 1.04 
2 1.02 7 5.4 1.02 1.02 
3 1.02 0 0 1.02 1.02 
4 1.03 8 0 1.02 1.02 
5 1 0 0 0.99 0.99 
6 1.01 0 3.2 1.01 1.01 
7 1.03 8 0 1.02 1.02 
8 1.02 0 0 1.01 1.01 
9 1.03 0 4.5 1.03 1.03 

6.1 Voltage Profile Improvement and Stability 

Table 1 and Fig. 6 illustrates the voltage 
magnitudes at all buses before and after 
compensation using PSO and SSA. It is evident 
that both algorithms effectively enhance the 
voltage profile, bringing the voltages closer to 
the nominal value of 1.0 pu. Notably, SSA and 
PSO demonstrates superior performance in 
minimizing voltage deviations, particularly at 
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buses 4, 5, 7, and 8, which were initially 
identified as weak buses (lowest pre-
compensation voltages). 

Table 2 (voltage profile comparison) and 
figure 6 confirms this observation, showing that 
SSA and PSO results in smoother and more 
stable voltage recovery across the system. This 
highlights the strength of the algorithms in 
finding optimal MVAR injection configurations 
that target voltage instability zones more 
effectively. It is interesting to note that PSO and 
SSA both have arrived to an equal total voltage 
deviation of 0.18 pu as indicated in Table 2. 

6.2 Capacitor Placement Justification 

Table 1 also presents the optimal locations and 
sizes (in MVAR) of capacitors determined by 
PSO and SSA. SSA selects capacitor placements 
at buses 2, 6, and 9 with values 5.4, 3.2 and 4.5 
MVAR respectively. PSO also recommends 
similar buses but of higher MVAR compensation 
values with placements at buses 2,4 and 7 with 
MVAR values of 7,8 and 8 respectively. These 
locations are consistent with buses exhibiting 
deviating pre-compensation voltages, indicating 
that both algorithms correctly identify the 
irregular voltage areas for reactive power support. 

The SSA's sum of injected MVAR values is 
lower than sum of PSO injected MVAR values. 
It highlights SSA’s more economical voltage 
profile results. However, PSO’s selection pattern 
reflects a more centralized strategy that reduces 
overall line losses and voltage drops. 

7. COMPARATIVE ANALYSIS 

7. 1 Comparison with Literature 

A comparison study on SSA and PSO for 
economic load dispatch optimization problems 
found that SSA often provides better solution 
quality and robustness, especially in nonlinear 
and constrained problems typical in electrical 
engineering, whereas PSO offers faster 
convergence but can be prone to premature 
convergence.  

While the statement still holds true in this 
study, in contrast to [Sinha, 2021], our study 
introduces a voltage constraint-based 
optimization using MVAR sizing to maintain 
optimal performance. SSA still maintains better 
performance under tighter bounds, suggesting 
robustness in constrained environments. 

 

 

Table 2 Voltage deviation after MVAr injections 

 
Fig. 6: Voltage profile before and after 

compensation 

7.2 Convergence and Computational Time 

Fig. 7 (convergence plot) reveals that SSA takes 
marginally more iterations to converge compared 
to PSO. However, despite more iterations, SSA 
demonstrates lower overall computational time 
(as detailed in Figure 8), attributed to its simpler 
mathematical operations and fewer parameter 
dependencies. This makes SSA more 
computationally efficient and easier to tune for 
large-scale systems. 

 
Fig. 7: Decreasing voltage deviation over the 

iterations 
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7.3 Interpretation  

Overall, SSA not only improves voltage profiles 
more consistently but also demonstrates 
computational advantages under constrained 
conditions. Its effective capacitor placement 
strategy, supported by convergence and voltage 
plots, confirms its suitability for real-time 
voltage stability enhancement in transmission 
networks. Future studies could explore hybrid 
approaches (e.g., PSO-SSA) to further enhance 
performance and adaptability. 

 
Fig. 8: Computational time over the iterations 

8. CONCLUSIONS 

The simulation results on the IEEE 9-bus system 
reveal that the Salp Swarm Algorithm (SSA) 
offers superior performance over Particle Swarm 
Optimization (PSO) in terms of MVAr sizing. 
Voltage profile uniformity, and computational 
efficiency. While PSO converges faster in the 
initial iterations, it tends to get trapped in local 
optima, leading to less effective reactive power 
compensation. SSA, despite requiring slightly 
more iterations, compensates with better global 
exploration, producing more optimal and stable 
voltage profiles. It also demonstrates lower 
computational time per iteration, indicating 
higher efficiency. These findings are supported 
by convergence plots and summarized in the 

tables provided. Importantly, SSA achieves this 
performance with fewer configuration 
requirements, making it a practical and scalable 
solution for power system applications. 
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