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Abstract 
Accurate short-term load forecasting is essential for efficient power system operation, energy 
management, and electricity pricing. Traditional statistical methods, such as seasonal autoregressive 
integrated moving averages with exogenous variables (SARIMAX), often fail to capture the 
intricate and dynamic patterns of electricity demand. Addressing the knowledge gap in developing 
countries, particularly Bhutan, this research explores advanced machine learning and deep learning 
techniques to enhance short-term load forecasting (STLF) accuracy in the Thimphu and 
Phuentsholing regions of Bhutan, characterized by unique electricity demand patterns due to 
population growth, industrial and commercial activities, and supply constraints. We evaluated 
SARIMAX, Support Vector Regression (SVR), Long Short-Term Memory Networks (LSTM), 
Convolutional Neural Networks (CNN), and hybrid CNN-LSTM architectures. On single-step 
STLF, we analyzed day-ahead aggregated load forecasts and 1-hour-ahead load forecasts based on 
historical load data over five years (2018-2022) for both Thimphu and Phuentsholing regions. In 
day-ahead aggregated load forecasting, the hybrid CNN-LSTM outperformed all other models with 
Mean Absolute Percentage Error (MAPE) values 2.332 ± 0.075%  for Thimphu and 3.216 ±
0.036% for Phuentsholing, while also achieving the best MSE, RMSE, and 𝑅² metrics. For 1-hour-
ahead forecasting, the CNN model achieved the lowest MAPE of 3.224 ± 0.06% in Thimphu and 
the hybrid CNN-LSTM model achieved a best MAPE of 3.687 ± 0.027%  for Phuentsholing. 
Careful preprocessing, optimal feature engineering, and hyperparameter tuning were performed for 
all forecasting types. The findings demonstrate that data-driven approaches significantly enhance 
forecasting accuracy, providing valuable insights for energy planners to manage resources and 
maintain the power grid, preventing blackouts and other disruptions.  
 Key Words: Short-Term Load Forecasting, Machine Learning, Deep Learning, Time-Series 
Analysis 
 

1. INTRODUCTION 

Reliable short-term predictions of electricity 
demand are essential—they help keep power 
systems running smoothly, optimize energy use, 
and set fair electricity prices (Madrid & Antonio, 
2021). Traditional statistical methods for load 
forecasting, such as autoregressive integrated 
moving average (ARIMA) and its advanced 
version, such as SARIMAX models, have 
limitations in capturing the complex and 
dynamic patterns of electricity demand, which 
may be affected by factors such as weather 
conditions, time of day, day of the week, and 
seasonality. 

Machine Learning (ML) and Deep Learning 
(DL) techniques have shown great potential in 
improving the accuracy of short-term load 
forecasting by leveraging the power of data-

driven approaches to capture non-linear and non-
stationary patterns (Vanting et al., 2021). In the 
context of Thimphu and Phuentsholing regions, 
which have a unique electricity demand pattern 
due to population growth, its industrial and 
commercial activities and constraints on the 
electricity supply (Zam et al., 2021), there is a 
need to develop and evaluate machine learning 
and deep learning models for short-term load 
forecasting. 

The coincidental peak load of Bhutan was 
recorded at 955.51 MW in 2023, which was an 
increase of 51.76% compared to 2022 when the 
coincidental peak load was 629.61 MW. During 
the winter months, when power generation is 
low, Bhutan imports electricity at a much higher 
tariff compared to the export tariff (BPSO, 2023). 
Bhutan's 13th Five-Year Plan (2024-2028) 
proposes to transform the country into a 
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developed nation by 2030. This plan includes the 
development of Gelephu Mindfulness City and 
other developmental projects (Dema, 2024) as 
well as the development of 1 GW of solar 
photovoltaic systems (Lhaden, 2023). The 
increase in electrical load is evident, and load 
forecasting techniques will be crucial to match 
the growing load demand and power generation. 

As Bhutan looks to diversify its energy 
sources with the introduction of large-scale solar 
photovoltaic power plants and wind energy 
conversion systems, which are inherently 
intermittent, accurate short-term load forecasting 
techniques are essential to ensure grid stability 
(Al-Ja’afreh et al., 2023). The forecasting should 
not only focus on estimating the energy resource, 
such as solar radiation and wind but also on 
estimating the possible coincidental load at the 
particular time when there is power generation 
from renewable energy sources. Additionally, 
there should be adequate ancillary services to 
cater to any deviations in power generation from 
renewable energy sources (Ray et al., 2024). 

The existing research on short-term load 
forecasting using machine learning and deep 
learning techniques has mostly focused on 
developed countries with different load patterns 
and characteristics. Therefore, there is a 
knowledge gap in the application of these 
techniques to developing countries like Bhutan. 
This research aims to address this gap by 
developing and evaluating machine learning and 
deep learning models for STLF in Thimphu and 
Phuentsholing regions so that the energy 
planners can make necessary resources and 
maintenance planning on the power grid 
preventing blackouts and other disruptions. 
Furthermore, this study will contribute to a more 
sustainable and reliable global energy system by 
demonstrating the effectiveness of data-driven 
approaches in complex and dynamic electricity 
demand patterns, advancing our understanding of 
the potential benefits and limitations of these 
techniques. 

The rest of the study is organized as follows: 
Section 2 presents reviews of key literature. 
Section 3 discusses the materials and methods, 
and Section 4 presents the results and 
discussions. Finally, Section 5 provides the 
conclusions and recommendations. 

2. RELATED WORK 

With the use of Artificial Intelligence, big data, 
and the Internet of Things for digitalization, 
smart grids are the future of power systems. He 

(2017) evaluated deep neural networks such as 
CNN and recurrent neural networks (RNN), 
along with traditional time series data analysis 
methods for load forecasting. The evaluation was 
conducted on a large dataset containing hourly 
loads for North China City for about 3 years. 
Performance evaluation metrics used were 
MAPE and mean average error (MAE). Their 
findings indicate that the parallel CNN-RNN 
model achieved the lowest MAPE and MAE of 
1.04% and 104.24 MW, respectively. It is 
recommended that for the robust performance of 
the models, a large training dataset is needed with 
more relevant input features such as hourly 
temperature and humidity. A review of deep 
learning methods applied to smart grid load 
forecasting was done by (Almalaq & Edwards, 
2017). Their survey explored the different 
applications of deep learning models that are 
used in power systems and smart grid 
forecasting. It was discovered that the use of 
CNN with 𝑘-means algorithm resulted in a great 
percentage reduction in root mean squared error 
(RSME) in comparison to other models. To 
improve the accuracy of STLF, Phyo et al. 
(2019), have applied LSTM and deep believe 
network models to their work of electricity load 
forecasting in Thailand. The historical data from 
the Electricity Generating Authority of Thailand 
was obtained from the period of January 2016 to 
January 2017. It was revealed that the LSTM 
model executed better than the DBN model. 
Ibrahim et al. (2022) conducted a complex case 
study on STLF in smart grids within Panama's 
power system. They identified key features such 
as the previous week's load, the previous day's 
load, and temperature. The deep learning 
regression model achieved the best performance 
with an 𝑅-squared (𝑅!) metric of 0.93 and an 
MAPE of about 2.9%. In addition, several 
performance analyses and comparisons of 
diverse ML and DL techniques have been 
deployed to study STLF in the study by Shahare 
et al. (2023). It is reported that the hybrid CNN-
LSTM model revealed superior performance 
with a coefficient of correlation (𝑅 ) value of 
95.05%. 

While these studies provide valuable 
insights into the application of ML and DL 
techniques for STLF, there are limitations that 
must be considered. For example, some studies 
may have used limited data which could affect 
the generalizability of their findings. In 
synthesizing the findings of these studies, it is 
evident that incorporating relevant input features 
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such as temperature and humidity can improve 
the accuracy of the models. Additionally, the 
studies highlight the importance of selecting 
appropriate models for specific contexts and the 
need for large training datasets to ensure robust 
model performance.  

3. MATERIALS AND METHODS  

3.1 Tools and Dataset Description 

All computations were performed in Jupyter 
Notebook IDE using the Python programming 
language and the necessary libraries for classical 
statistical and machine learning models. For DL 
model implementations, we used TensorFlow as 
the backend. The computations were carried out 
on a personal MacBook Air M1 with 8 GB of 
memory system. 

To develop accurate and robust forecasting 
models, one must obtain endogenous variables 
inherent to the load forecasting system and 
exogenous variables that influence load 
consumption. In this research, we obtained time 
series historical load consumption data 
(endogenous variables) from the Bhutan Power 
System Operator (BPSO), Thimphu, Bhutan, for 
the period of five years from January 2018 to 
December 2022 for both Thimphu and 
Phuentsholing. All these time series data were 
recorded with hourly granularity in monthly 
Excel files, consisting of a total of 43,824 
timestamps each for Thimphu and 
Phuentsholing. Regarding exogenous variables 
such as weather data, we initially obtained this 
data from the National Center for Hydrology and 
Meteorology Department, Royal Government of 

Bhutan, for the same five-year period. However, 
we noticed significant missing values in the data 
consecutively, and it was recorded only on a 
daily basis. Since we aimed to obtain data at an 
hourly resolution, we obtained weather data for 
both Thimphu and Phuentsholing regions from 
the online weather API OpenMeteo, which 
included the following input parameters: 
maximum and minimum temperature recorded 
daily and hourly at 2 meters above ground, 
apparent temperature, precipitation hours 
recorded daily and hourly, precipitation duration 
recorded daily, snow depth in Thimphu during 
the winter season, sunlight and daylight duration 
recorded daily for the Phuentsholing region, and 
solar irradiance. Additionally, we developed 
calendar effects data, such as the day of the week, 

time of the day, season, weekend, national and 
regional holidays, and working days.  

3.2 Exploratory Data Analysis and Feature 
Engineering 

The historical load consumption data at an hourly 
resolution, available in monthly Excel files, were 
loaded and converted to Data Frames using the 
pandas library. These data frames were then 
checked for missing values and outliers. In both 
regions, certain timestamps showed zero load 
consumption values. Upon verification with the 
Bhutan Power Corporation (BPC) Annual Report 
2020, it was found that these instances were due 
to power blackouts and faulty recording 
equipment. However, in practical scenarios, zero 
load consumption is unrealistic for forecasting 
purposes. Therefore, we replaced the zero load 

Fig.1: Daily aggregated load consumption, maximum temperature, and precipitation duration in Thimphu from 
2018-2022. 

https://portal.issn.org/resource/ISSN/2958-8456
https://portal.issn.org/resource/ISSN/2958-8464


Zorig Melong: A Technical Journal of Science, Engineering and Technology Vol. 8 Issue 2 (2025) 

P-ISSN (2958-8456) E-ISSN (2958-8464) 183 

consumption values with the average load 
consumption value. 

For aggregated daily load consumption 
forecasting, we resampled the hourly resolution 
load values to a daily load consumption by 
summing up load values at 24-hour timestamps. 
Consequently, from the total of 43,824 hourly 
resolution load data records, the daily aggregated 
load was obtained as 1,826 samples for further 
analysis. 

Regarding the weather data, there were no 
missing values in either the daily recorded data 
or the hourly recorded dataset. For other 
exogenous variables such as day of the week and 
time of the day, these features were derived from 
the time stamp of the historical load data. 
Monday is encoded as day 1, Tuesday as day 2 
and so on. As for the seasonal feature, we have 
encoded winter month as 0, spring as 1, summer 
as 3 and autumn as 4. The holiday data which 
includes weekends, national holidays and local 
festivals for both the regions were manually 
recorded and the data is then transformed using a 
binary indicator where we assigned a binary 
value of 1 if the day is a working day and 0 if the 
day is a holiday. 

Fig.1 depicts the daily aggregated load 
consumption, the maximum temperature 
recorded, and the duration of precipitation in 
hours for the Thimphu region. Upon examining 
the load consumption data, it is evident that 
consumption rises drastically during the winter 
season in Thimphu. This increase is due to the 
widespread use of heating systems in residential 
and office buildings in response to the cold, harsh 
weather. In contrast, the trend in Phuentsholing 

is different, with load consumption rising during 
the summer months. This increase is attributed to 
higher temperatures and the use of cooling 
systems throughout the region. Additionally, a 
notable pattern is observed in both regions: 
temperature rises during the monsoon season, 

accompanied by an increase in the duration of 
daily precipitation. For hourly load consumption, 
Thimphu showed a clear seasonal trend, whereas 
in Phuentsholing, the trend appears to be more 
stable, with a slight increase during the summer 
months. Additionally, the variation in load 
consumption patterns between weekdays and 
weekends was studied. It was evident that load 
consumption was relatively higher during 
weekdays compared to weekends. From Fig.2, 
the electrical load demand in Thimphu for the 
week of December 5-11, 2022, shows that the 
load demand on Saturday and Sunday is lower 
than on weekdays. This could be attributed to the 
closure of government offices. A similar trend is 
observed for Phuentsholing. 

 
Fig.3: Daily Electrical Load Demand for One Week 

in Thimphu (05-11 December 2022) 

Through box-plot analysis, Fig.3 reveals the 
hourly distribution of load consumption for a 
typical year in Phuentsholing. It demonstrates 
that the load consumption pattern varies 
throughout the day, with noticeable peak hours 
around the 10th hour until noon, at the 12th hour, 
and again in the evening between the 18th hour 

(6 PM) and the 21st hour (9 PM). Moreover, it 
was also discovered that load consumption 
patterns differ between regular working days and 
during public holidays and weekends.  

A correlation heatmap is an essential tool in 
data exploration and analysis, providing a visual 

Fig.2: Box Plot Analysis of Hourly Load Consumption in Phuentsholing in 2022. 
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representation of the relationship between 
multiple variables. It uses colour gradients to 
indicate the strength of correlations between 
features, making it easy to identify patterns and 
dependencies. For instance, as shown in Fig.4, 
the load consumption of the same hour over the 
previous three days (Load_T-24, Load_T-48, 
Load_T-72) and the previous day's 24-hour 
average load (AvgLoad_T-24) exhibit high 
correlations of 0.98, 0.97, 0.97, and 0.75, 
respectively, with the current load demand. 
Moreover, a moderate relationship with 
temperature and relative humidity can be 
observed. 

 
Fig.4: Correlation Heatmap. 

In designing an accurate time series 
forecasting model, selecting important and 
relevant features is crucial. Feature engineering 
involves using domain knowledge to create 
features that enhance ML and DL algorithms, 
which is essential for improving model 
performance. It transforms raw data into 
meaningful inputs, capturing underlying patterns 
and relationships more effectively. To identify 
the most important features of our STLF models, 
we applied the random permutation technique 
and obtained relevant features for model training.  

3.3 Overview of Machine Learning and Deep 
Learning Models 

Seasonal Auto Regressive Integrated Moving 
Averages with Exogenous Regressors 
(SARIMAX) 
The SARIMAX model is a powerful tool in time 
series analysis, particularly for forecasting tasks 
where the data exhibits seasonal patterns and 
external factors, such as calendar effects and 
weather-related data, influence the time series. 
SARIMAX extends the traditional ARIMA 
model by incorporating additional explanatory 
variables that enhance the model's forecasting 
accuracy. By integrating both autoregressive 
(AR) and moving average (MA) components 

with seasonality and exogenous variables, 
SARIMAX provides a robust framework for 
analyzing and forecasting time series data. The 
mathematical formulation of the model is: 

𝑦" = 𝛽"𝑥" + 𝑢" ,																									(1) 
𝜑#(𝐿)𝜙0#(𝐿$)Δ%Δ$&𝑢" = 𝐴(𝑡) 

+	𝜃'(𝐿)𝜃0((𝐿$)𝜁" , (2) 
 where the 𝛽 in equation (1) represents the 
external input variables and 𝑦"  is the forecast 
variable. The remaining hyperparameters of the 
model are: 𝑝  for the AR order, 𝑞  for the MA 
order, 𝐼  for the differencing order, 𝑃  for the 
seasonal AR order, 𝑄   for the seasonal MA 
order,𝐷 for the seasonal differencing order, and 
𝑠 for the seasonal coefficients.  

Since SARIMAX is one of the classical 
statistical models widely used in time series 
forecasting tasks, we chose this model as the 
baseline for evaluating the performance of more 
advanced ML and DL models. 
Support Vector Regression (SVR) 
Support Vector Regression (SVR) is an 
extension of the classification model Support 
Vector Machines introduced by Vapnik and 
colleagues in 1998. SVR finds a function that 
each prediction 𝑦 deviates from the target value 
by no more than 𝜖	(Smola and Schölkopf, 2004). 
This approach helps to achieve robust regression 
by minimizing the margin of error within a 
specified tolerance level. The mathematical 
model is:  

𝑦 = 𝒘)𝜙(𝒙) + 𝑏, 
where the weights 𝒘  and the bias term 𝑏  are 
obtained by solving the convex optimization 
problem 

min
𝒘,,,-!,-!

∗	
	
1
2
‖𝒘‖! + 𝐶H(𝜉/ + 𝜉/∗)

1

/23

 

Subject to  
𝑦/ −𝒘)𝜙(𝑥/) − 𝑏 ≤ 𝜖 + 𝜉/∗						(𝑖 = 1,2, … ,𝑁) 
𝒘)𝜙(𝑥/) − 𝑦/ + 𝑏 ≤ 𝜖 + 𝜉/ 						(𝑖 = 1,2, … ,𝑁) 

𝜉/ , 𝜉/∗ ≥ 0,						(𝑖 = 1,2, … ,𝑁) 
𝜙(⋅)  is the transformation of the training data 
from the input space to a higher-dimensional 
kernel space, which enables SVR to capture 
complex patterns and trends that linear models 
might miss.  
Long Short-Term Memory (LSTM) Network 
LSTM networks are a specialized type of RNN 
that excels in capturing long-term dependencies 
in sequential data. They are particularly useful 
for time series forecasting, where understanding 
long-range temporal patterns is crucial. LSTM 
networks address the vanishing gradient 
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problem, which are common in traditional 
RNNs, by using a unique architecture that 
includes a memory cell and three gating 
mechanisms, namely, the input gate, forget gate, 
and output gate. These gates control the flow of 
information, enabling the network to retain or 
discard information as needed over long 
sequences. 

The mathematical architecture of LSTM is 
as follows: 
Forget Gate: Decides what information from the 
previous cell state should be discarded. 

𝑓" = 𝜎(𝑊4 ⋅ [ℎ"53, 𝑥"] + 𝑏4) 
Input Gate: Determines which new information 
will be stored in the cell state.  

𝑖" = 𝜎(𝑊/ ⋅ [ℎ"53, 𝑥"] + 𝑏/) 
	𝐶X" = tanh(𝑊6 ⋅ [ℎ"53, 𝑥"] + 𝑏6) 

Cell State Update: Updates the cell state using 
the input and forget gates.   

𝐶" = 𝑓" ∗ 𝐶"53 + 𝑖" ∗ 𝐶X" 
Output Gate: Determines the output from the 
current cell state.  

𝑜" = 𝜎(𝑊7 ⋅ [ℎ"53, 𝑥"] + 𝑏7) 
ℎ" = 𝑜" ∗ tanh(𝐶") 

Here 𝑥" represents the input at time 𝑡, ℎ"53 
is the hidden state from the previous time step, 𝜎 
is the activation function, tanh is the hyperbolic 
tangent function, 𝑊  and 𝑏  are the weights and 
biases learned during the training process of the 
network.  
Convolutional Neural Networks (CNN) 
CNNs have shown significant promise in the 

realm of load forecasting and time series 
forecasting. Originally developed for image 
processing tasks, CNNs excel at capturing spatial 
hierarchies in data. In the context of time series, 
this translates to effectively identifying temporal 
patterns and trends. The key to CNNs' 
effectiveness lies in their convolutional layers, 
which apply filters across the input data to extract 
relevant features. For load forecasting, these 
filters can uncover patterns such as daily or 
seasonal variations in electricity usage, allowing 
the model to make accurate predictions based on 

historical data. 
Hybrid CNN-LSTM 
Hybrid CNN-LSTM models combine the 
strengths of both architectures to leverage the 
spatial feature extraction capabilities of CNNs 
and the temporal sequence learning abilities of 
LSTMs. This combination is particularly 
effective in capturing complex patterns in STLF, 
where both short-term fluctuations and long-term 
trends are important. In this model, CNN layers 
are first applied to the input data to extract local 
and hierarchical features. These features are then 
fed into LSTM layers, which capture the 
sequential dependencies over time. The 
convolutional layers focus on identifying 
significant patterns in the data, while the LSTM 
layers handle the temporal dependencies and 
long-term trends. This synergy allows the model 
to predict future load demand more accurately, 
considering both immediate changes and overall 
trends. The hybrid approach not only improves 

Fig.5: Flowchart of the Proposed Study 
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the forecasting accuracy but also enhances the 
model's ability to generalize across different 
scenarios and datasets. 

3.4 Train/Validation/Test Split 

In time series forecasting, the sequential nature 
of the data requires careful handling to ensure the 
model's ability to generalize to unseen data. In 
our study, we divided the single-step forecasting 
models into two types: one-day-ahead total 
power demand forecasting and one-hour-ahead 
load demand forecasting using an hourly dataset. 
In the single-step forecast of daily aggregated 
load demand, we split the dataset into 80%-10%-
10% for training, validation, and testing, 
respectively. The data from January 1, 2018, to 
December 31, 2021, was used for training. The 
model was then validated on data from January 
1, 2022, to June 30, 2022, and tested on data from 
July 1, 2022, to December 31, 2022. For the 
hourly resolution load dataset, we split the data 
into 85%-7.5%-7.5% for training, validation, and 
testing. Out of the total 43,824 samples, 37,250 
timestamps were used for training, while 3,285 
samples each were consecutively used for 
validation and testing. Fig.5 presents the overall 
framework of the proposed study, and the flow is 
consistent for developing forecasting models in 
both Thimphu and Phuentsholing.  

3.5 Evaluation Metrics 

Accurate evaluation metrics are essential in 
forecasting models to assess their predictive 
capabilities and ensure reliable performance. In 
each of the following evaluation metric, 𝑦/ refers 
to the 𝑖 − th	 true value,  �̂�/  is the 𝑖 − th 
predicted value, 𝑦_  is the mean value of true 
values in the test samples and 𝑛 represents the 
total number test dataset.  
• Mean Absolute Percentage Error 

(MAPE): A relative measure of error 
between forecasted and actual values, 
expressed as a percentage, indicating the 
average magnitude of forecasting error. 

Lower MAPE values denote better 
forecasting accuracy.  

𝑀𝐴𝑃𝐸 =	
1
𝑛
Hc

𝑦/ − �̂�/
𝑦/

c × 100	
8

/23

 

• Mean Squared Error (MSE): An average 
of the squared differences between 
forecasted and actual values, providing 
insight into the average squared magnitude 
of forecasting error.  

𝑀𝑆𝐸 =	
1
𝑛
H(𝑦/ − �̂�/)!
8

/23

 

• Root Mean Squared Error (RMSE): A 
measure of the difference between forecasted 
and actual values, expressed in the same unit 
as the load variable. Smaller RMSE values 
indicate higher forecasting accuracy.  

𝑅𝑀𝑆𝐸 =	f	
1
𝑛
H(𝑦/ − �̂�/)!
8

/23

 

• Correlation Squared (𝑹𝟐 ): Indicates the 
proportion of variance in the dependent 
variable (actual energy consumption) 
explained by the independent variable 
(forecasted energy consumption). R2 values 
range between 0 and 1, with higher values  
indicating better fit between forecasted and 
actual values.  

𝑅! = 1 −	
∑ (𝑦/ − �̂�/)!8
/23

∑ (𝑦/ − 𝑦_/)!8
/23

	 

4. RESULTS AND DISCUSSIONS 

We present the results in two sections: 4.1 Daily 
aggregated load forecasting, and 4.2 An hour-
ahead load forecasting for both the regions.  

4.1 Daily Aggregated 1-Day-Ahead Load 
Forecasting in Thimphu 

Feature Selection 
Effective model performance hinges on the 
careful selection of relevant features. In our study, 
feature selection was conducted individually for 

Model MAPE 
(%) 

MSE 
(𝐌𝐖𝟐) 

RMSE 
(𝐌𝐖) 

𝑹𝟐 

SARIMAX 3.238 1647.061 40.584 0.969 

SVR 2.401 1197.457 34.604 0.978 

LSTM 3.101 ± 0.555 1550.863 ± 23.542 39.381 ± 4.852 0.971 ± 0.007 

CNN 2.644 ± 0.186 1277.348 ± 1.578 35.74 ± 1.256 0.976 ± 0.002 

CNN-LSTM 𝟐. 𝟑𝟑𝟐 ± 𝟎. 𝟎𝟕𝟓 𝟏𝟏𝟏𝟎. 𝟖𝟖𝟗 ± 𝟎. 𝟐𝟕𝟐 𝟑𝟑. 𝟑𝟑 ± 𝟎. 𝟓𝟐𝟐 𝟎. 𝟗𝟖 ± 𝟎. 𝟎𝟎𝟏 

Table 1: 1-Day-Ahead Single-Step Daily Aggregated Load Forecasting in Thimphu. 
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each model, employing feature engineering 
through random permutation techniques for 
feature ranking. Subsequently, the least 
important features were discarded to enhance 
model efficacy. 

For the SARIMAX and SVR models, 13 
features were ultimately selected. These features  
cincluded the day of the week, working day, 

season, maximum temperature, snowfall depth, 
precipitation duration for the day, and the 
previous 7 days' lagged load consumption values. 

In the case of the LSTM model, a look-back 
window size of 7 days was utilized to predict the 
next day's load consumption, incorporating 7 
features: load, day of the week, working day, 
season, maximum temperature, snowfall depth, 

Fig.6: Comparative analysis of single-step (1-day-ahead) predictions by ML and DL models in Thimphu from 1 
July to 31 December 2022. 

Fig.7: Comparative analysis of single-step (1-day-ahead) predictions for the month of November 2022 in Thimphu 
using ML and DL models. 

https://portal.issn.org/resource/ISSN/2958-8456
https://portal.issn.org/resource/ISSN/2958-8464


Zorig Melong: A Technical Journal of Science, Engineering and Technology Vol. 8 Issue 2 (2025) 

P-ISSN (2958-8456) E-ISSN (2958-8464) 188 

and precipitation duration. Similarly, the CNN 
model  employed the same look-back window 
size of 7 days and the same 7 features as the 
LSTM model. For the CNN-LSTM model, an  
expanded look-back window size of 8 days was 
adopted. This model included all the features 
used in the LSTM and CNN models, with the 
addition of minimum temperature, precipitation 
amount, and wind speed.  
Parameter Selection 
The forecasting models in our study rely 
significantly on the parameters selected in 
advance. For the SARIMAX model, we used the 
‘auto_arima’ function from the ‘statsmodels’ 
library in Python. For the SVR model, we 
employed the Grid Search method, and for the 
deep learning models, Bayesian Optimization 
was utilized. While training SVR models, the 

RBF kernel showed superior performance 

compared to linear and polynomial kernels. 
Therefore, the RBF kernel was used throughout. 
This kernel is of the form 

𝐾(𝑥, 𝑦) = expm−
‖𝑥 − 𝑦‖!

2𝜎!
n 

Where 𝜎 is the kernel parameter.  
Moreover, since the features in the dataset 

that we have obtained have varying numerical 
ranges, they were normalized to the range of [0, 
1] using the following min-max scaling formula: 

𝑧/ =
𝑥/ −min(𝑥)

max(𝑥) − min(𝑥)
 

where 𝑥/  is the 𝑖 − th  data, 𝑧/  is the 𝑖 − th 
normalized data,min(𝑥)  and max	(𝑥)  are the 
minimum and maximum values of the 𝑥 feature.  
 
Results 

For 1-day-ahead single-step daily aggregated 

Model MAPE 
(%) 

MSE 
(𝐌𝐖𝟐) 

RMSE 
(𝐌𝐖) 

𝑹𝟐 

SARIMAX 3.802 32.004 5.657 0.829 
SVR 3.619 28.564 5.344 0.848 
LSTM 3.559 ± 0.1 28.998 ± 0.021 5.385 ± 0.144 0.846 ± 0.008 
CNN 3.296 ± 0.021 26.061 ± 0.002 5.105 ± 0.045 0.861 ± 0.002 
CNN-LSTM 𝟑. 𝟐𝟏𝟔 ± 𝟎. 𝟎𝟑𝟔 𝟐𝟓. 𝟏𝟖 ± 𝟎. 𝟎𝟎𝟎𝟒 𝟓. 𝟎𝟏𝟖 ± 𝟎. 𝟎𝟏𝟗 𝟎. 𝟖𝟔𝟔 ± 𝟎. 𝟎𝟎𝟏 

Table 2: 1-Day-Ahead Single-Step Daily Aggregated Load Forecasting in Phuentsholing. 

Fig.8: Comparative analysis of single-step (1-day-ahead) forecasting using ML and DL models in 
Phuentsholing from 01 July to 31 December 2022. 
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load forecasting, we have employed all five 
models described previously with the evaluation 
metrics also outlined earlier. The overall 
summary of the results is tabulated in Table 1. 
For DL models, due to the random initialization 
of the weights before training, even though we 
use the optimized set of hyperparameters, the 
results vary slightly over different runs. 
Therefore, the results we report in the table are 
the average values over five runs along with the 
standard deviation. 

From the tabulated results in Table 1, it is 

revealed that the hybrid CNN-LSTM model 
significantly outperforms the other models. It 
achieves the lowest MAPE at 2.332 ± 0.075%, 
indicating its superior accuracy in forecasting. 
This validates the high accuracy of the model, as 
the MAPE is well below 10% (Lewis, 1984). In 
comparison, the SARIMAX model performs 
worst with the highest MAPE value, while the 
SVR, LSTM, and CNN models all show 
intermediate performance. The CNN-LSTM 
model also excels in terms of MSE, RMSE, and 
𝑅! , with values of 1110.889 ±
0.271	MW!, 33.33 ± 0.522	MW , and 0.98 ±
0.001  respectively, reinforce its overall 
effectiveness. This highlights the robustness of 
the hybrid CNN-LSTM model for this 
forecasting task. Moreover, the prediction 
capabilities of the models are demonstrated in 
Fig.6 and Fig.7. 
Daily Aggregated 1-Day-Ahead Load 
Forecasting in Phuentsholing 
Parameter selection was done similarly to 
Thimphu’s case above.  
Feature Selection 
For the SARIMAX and SVR models, we selected 
10 optimal features using random permutation 
feature engineering techniques. These features 
include the previous seven days' lagged loads, 
day of the week, working day indicator, and 
maximum temperature. For the DL models 
LSTM and CNN, we used a lookback window 
size of the past seven days of load consumption. 
In contrast, for the CNN-LSTM model, we 
employed an even-numbered lookback window 

size of eight days, allowing the generation of two 
subsequences during model training. Regarding 
features, the LSTM and CNN models utilized 
four features: load, day of the week, working day, 
and maximum temperature. In CNN-LSTM 
models, however, optimal performance was 
achieved using six features: load, day of the week, 
working day, minimum temperature, duration of 
sunshine, and precipitation. 
Results  

Table 2 shows the one-day-ahead load 
forecasting results for the Phuentsholing region, 

based on daily total electricity demand. It is 
evident that the hybrid CNN-LSTM model once 
again outperforms all other models, achieving the  

lowest MAPE at 3.216 ± 0.036% . The 
MSE, RMSE, and 𝑅! values are also superior to 
those of the other models, with the CNN model 
performing closely behind with a MAPE of 
3.296 ± 0.021%.  The baseline SARIMAX 
model has the lowest performance, while the 
SVR model performs slightly better. As 
observed, the ML and DL models significantly 
outperform the classical baseline method, 
suggesting their suitability for these forecasting 
tasks. Each model's prediction is also illustrated 
in Fig.8 and Fig.9.  
1-Hour-Ahead Load Forecasting 
1-Hour-Ahead Load Forecasting in Thimphu 
Model Selection 
For 1-hour-ahead forecasting, we employed only 
the DL models: LSTM, CNN, and CNN-LSTM, 
as the dataset is large and training time is 
complex for SARIMAX and SVR models. The 
advantage of using DL is more pronounced when 
dealing with large datasets, as the computational 
time is not excessively long. As the features in 
our dataset have varying numerical ranges, we 
standardized them to have zero mean and unit 
standard deviation using the following formula: 

𝑧/ =
𝑥/ − 𝜇/(𝑥)
𝜎/(𝑥)

 

Where 𝑥/ is the 𝑖 − th input data, 𝑧/ is the 𝑖 − th 
standardized data, 𝜇_𝑖(𝑥)  and 𝜎/(𝑥)  are the 
mean and standard deviation of the feature 𝑥.  
Feature Selection 

Model MAPE 
(%) 

MSE 
(𝐌𝐖𝟐) 

RMSE 
(𝐌𝐖) 

𝑹𝟐 

LSTM 4.137 ± 0.241 6.477 ± 0.049 2.545 ± 0.222 0.974 ± 0.005 
CNN 𝟑. 𝟐𝟐𝟒 ± 𝟎. 𝟎𝟔 𝟑. 𝟗𝟐𝟖 ± 𝟎. 𝟎𝟎𝟎𝟔 𝟏. 𝟗𝟖𝟐 ± 𝟎. 𝟎𝟐𝟓 𝟎. 𝟗𝟖𝟒 ± 𝟎. 𝟎 
CNN-LSTM 3.917 ± 0.119 5.063 ± 0.004 2.25 ± 0.066 0.98 ± 0.001 

Table 3: 1-Hour-Ahead Single-Step Load Forecasting in Thimphu. 
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For all DL models, our experiments revealed that 
a lookback window size of the past 48 hours 
provides optimal results for predicting the load  

 

one hour into the future. Using random 
permutation feature importance ratings, we 
identified nine features that result in effective 
model performance. These features are load, 
previous day’s same hour load, two days prior 
same hour load, three days prior same hour load, 
previous 24 hours average load consumption, 
hour of the day, working day, temperature at 2 
meters above ground, and apparent temperature. 
Parameter Selection 
A rigorous hyperparameter tuning was done by 
first searching two rounds for number of hidden 
layers and units, then searching for learning rate,  
dropout per cent, dense layers, choosing 
activation functions, optimizers, and then finally 
concluded  
with the decision on the batch size. Bayesian 
Optimization techniques could not be done since 
the search took excessive time to execute. 
Results 
The 1-hour-ahead load forecasting in the 
Thimphu region shows that among the three DL 

models utilized, the CNN model significantly 
outperforms the LSTM and the hybrid CNN-
LSTM model with the lowest MAPE value of 

3.224 ± 0.06%,  an RMSE value of 1.982 ±

0.025 MW, and the highest 𝑅² value of 0.984. 
The hybrid CNN-LSTM model performs fairly 
with a MAPE of 3.917 ± 0.119%,  while the 
lowest performance was recorded with the 
LSTM, which has a MAPE of 4.137 ± 0.241%. 
The overall results are shown in Table 3. 
Additionally, the results are obtained as the 
average of 5 different runs using the optimized 
set of hyperparameters. The accuracies of the 
forecasting models are seen on two randomly 
selected unseen test data as illustrated in Fig.10. 
1-Hour-Ahead Load Forecasting in 
Phuentsholing 
Similar to the 1-hour-ahead forecasting in 
Thimphu, we only use the DL models here as 
well.  
Feature Selection 
Using the same feature engineering techniques, it 
was identified that a total of 8 features, including 
load, previous day's same-hour load, two days 
prior same-hour load, three days prior same-hour 
load, past 24 hours average load, hour of the day, 

Model MAPE 
(%) 

MSE 
(𝐌𝐖𝟐) 

RMSE 
(𝐌𝐖) 

𝑹𝟐 

LSTM 4.02 ± 0.108 0.076 ± 0.00005 0.275 ± 0.007 0.939 ± 0.003 
CNN 3.746 ± 0.036 𝟎. 𝟎𝟔𝟓 ± 𝟎. 𝟎𝟎 𝟎. 𝟐𝟓𝟒 ± 𝟎. 𝟎𝟎𝟐 𝟎. 𝟗𝟒𝟕 ± 𝟎. 𝟎𝟎𝟏 
CNN-LSTM 𝟑. 𝟔𝟖𝟕 ± 𝟎. 𝟎𝟐𝟕 𝟎. 𝟎𝟔𝟓 ± 𝟎. 𝟎𝟎 0.255 ± 0.002 𝟎. 𝟗𝟒𝟕 ± 𝟎. 𝟎𝟎𝟏 

Fig.9: Comparative analysis of step-ahead (1-day-ahead) load forecasting in Phuentsholing for the month of 
November 2022 using ML and DL models. 

Table 4 1-Hour-Ahead Single-Step Load Forecasting in Phuentsholing. 
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working day, and temperature, provided the best 
model performance.  
Parameter Selection 
The hyperparameter tuning was also rigorously 
conducted using the same procedure as in the 
case of model development in Thimphu. 
The summary of the forecasting accuracy is 
reflected in Table 4. 

Clearly, it is observed that the hybrid CNN-
LSTM model outperforms the other two models 
in terms of MAPE value, achieving the lowest at 
3.687 ± 0.027% . The CNN model also 
performs well. In terms of MSE and 𝑅! values, 
both CNN and CNN-LSTM models show similar 
effectiveness. Additionally, CNN achieves the 
lowest RMSE value at 0.254 ± 0.002  MW, 
slightly lower than that of the CNN-LSTM 
model. Overall, CNN and CNN-LSTM models 
perform equally well, while the LSTM model 
lags in all evaluation metrics. These model 
performances can also be compared on two 
randomly chosen days, as shown in Fig.11. 
Discussions 

In the daily aggregated load forecasting for 1-
day-ahead predictions in Thimphu and 
Phuentsholing regions, studied separately, ML 
and DL models demonstrated superior 
performance compared to the baseline classical 
model SARIMAX. Among the DL models, it is 
evident that the LSTM model did not exhibit any 
significant advantage over the CNN and CNN-
LSTM models but performed closely behind. 
However, the hybrid CNN-LSTM model, which 
integrates CNN layers to extract important 
features before feeding them into LSTM layers, 
achieved the best performance in both regions 
across all evaluation metrics. Particularly 
noteworthy were the lowest MAPE scores of 
2.332% and 3.216% achieved in Thimphu and  
Phuentsholing, respectively. Additionally, the 
SVR model showed remarkable performance and 
was compared favourably to the deep learning 
models.  

Conversely, for the 1-hour-ahead 
forecasting task in Thimphu, it was observed that 

Fig.10 Predicted 1-hour-ahead electrical load in Thimphu on two randomly chosen days using DL models. 
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the CNN model outperformed significantly in all 
evaluation metrics, a turn from the hybrid CNN-
LSTM model's previous leadership in the 
performance board. The hybrid model 
maintained a slight advantage over the LSTM 
model. However, in the forecasting results for the 
Phuentsholing region, both the hybrid CNN-
LSTM model and the CNN model demonstrated 
effective performance, while the LSTM model 
consistently lagged across all evaluation metrics. 

Regarding the training and testing time 
complexity of these deep learning models, CNN 
exhibited the shortest time, followed by the 
hybrid CNN-LSTM, with LSTM requiring the 
longest duration for model training and testing. 
Therefore, for large datasets, the CNN model is 
highly recommended based on evaluation 
metrics and time efficiency perspectives. 

An observable increase in evaluation 
metrics such as MAPE, MSE, and RMSE, 
alongside slightly reduced R² values in single-
step 1-hour-ahead forecasting for both Thimphu 
and Phuentsholing regions compared to daily 
aggregated load demand forecasting, could be 
attributed to dataset size differences. 
Specifically, the 1-hour-ahead forecasting 

involved significantly more samples (43,826) 
compared to the aggregated demand samples 
(1,826). The complexity of model training time 
and the search for optimal hyperparameters also 
significantly influenced identifying the best 
model performances. In daily aggregated load 
demand forecasting, training was relatively 
straightforward, and hyperparameter tuning 
included advanced Bayesian optimization 
following careful manual adjustments. However, 
for 1-hour-ahead forecasting, all hyperparameter 
tuning had to be conducted manually due to the 
excessive time required for Bayesian 
optimization.  

5. CONCLUSIONS 

In this research, we have presented short-term 
load forecasting for Thimphu and Phuentsholing 
regions using machine learning and deep 
learning models, with the classical seasonal 
autoregressive integrated moving averages with 
explanatory variables method as the baseline 
model for performance comparisons. 

In the first part, various popular techniques 
used for short-term electrical load forecasting 
were reviewed and experimented on the single-

Fig.11 Predicted 1-hour-ahead electrical load using DL models in Phuentsholing. 
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step (1-day-ahead) daily aggregated load demand 
in Thimphu and Phuentsholing regions. 
Thorough exploratory data analysis was also 
conducted, leading to the creation of temporal 
features, including calendar effect features that 
impact load consumption. Through random 
permutation feature engineering techniques, 
optimal and relevant features for each model 
were determined and evaluated. 

Among the models employed for 1-day-
ahead aggregated load forecasting, the hybrid 
convolutional neural network and long short-
term memory network significantly 
outperformed all other models, achieving the 
lowest MAPE of 2.332% and 3.21% respectively 
in the Thimphu and Phuentsholing regions, while 
also maintaining the best values of MSE, RMSE, 
and R². This hybrid model used seven optimal 
features with a lookback window size of the 
previous seven days. 

For 1-hour-ahead load forecasting, which 
involved a large dataset for training and testing, 
only deep learning models were evaluated due to 
their effectiveness in dealing with big data. The 
convolutional neural network had an edge over 
other models in the Thimphu region, achieving 
the lowest MAPE score of 3.224% using a 
lookback window of 24 hours with nine optimal 
features. In the Phuentsholing region, both the 
convolutional neural network model and the 
hybrid model showed almost equal 
performances, with the hybrid model recording 
the lowest MAPE of 3.687%, closely followed by 
the convolutional neural network. 

Additionally, the convolutional neural 
networks are executed in the shortest span of 
time, making them especially suitable for big 
data applications. 

The performance of the deep learning 
models could be further improved with more 
advanced computational resources and by 
deploying more effective hyperparameter 
optimization algorithms. It would be beneficial to 
explore hyperparameter tuning methods such as 
the tree-structured Parzen estimator. 

However, this research has several 
limitations. The study was conducted only in the 
specific regions of Thimphu and Phuentsholing 
and does not represent the entire nation's picture 
of demand. Also, we have conducted only a 
forecast horizon of single-step load demand.  

In the future, this research could be 
extended to other regions and the entire country 
for short-term load demand forecasting. In 
particular, multi-step forecasting such as 24-

hours ahead into the future could also be taken 
up.  
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