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Abstract 
Flooding has historically caused massive social, economic and environmental damage affecting lives 
and livelihood. There is a concerted effort to study the phenomenon of flooding, hazard assessment, 
mitigation and prevention of flood and associated risks. In the planning phase, Flood Susceptibility 
Mapping (FSM) to identify vulnerable areas are useful to  provide critical data for preparedness, risk 
management, and sustainable land use planning. Most flood susceptibility maps are generated using 
multi-criteria Decision models (MCDM) and Machine Learning models. The reliability and 
accuracy of Flood Susceptibility Maps are increased by systematic evaluation of multiple flood 
related factors and their interrelationship which are more easily analyzed by machine learning 
models. Therefore, the aim of the study is to  develop FSM for Toorsa River and the Pasakha River. 
using the two multi-criteria Decision models, the Shannon Entropy model and the Criteria 
Importance Through Intercriteria Correlation  method. Further FSM were also developed using two 
machine learning algorithms of Random Forest  and Support Vector Machine.  Factors such as 
elevation, slope, soil type, and land use/land cover, rainfall, and Topographic Wetness Index were 
assigned weights based on the two MCDM techniques to develop the maps. Similarly, the same 
factors were used for training ML models and validating their performance in flood-prone area 
classification. The results of the study shows that Area Under Curve scores were high (0.98) in both 
the study area using Random Forest while the lowest score of 0.21 was obtained for Pasakha river 
using the Shannon Entropy Model. In general the Machine Learning models are found to be more 
accurate, which may be attributed to its ability to interpret data in a non-linear manner unlike the 
MCDM methods. The final Flood Susceptibility Maps of the study area were produced based on 
Random Forest models, as it provided the most accurate results.  
Key Words: Flood susceptibility mapping, multi-criteria Decision models, Machine Learning, 
Criteria Importance Through Intercriteria Correlation, Shannon Entropy Model, Random Forest, 
Support Vector Machine 
 

1. INTRODUCTION 

As a natural aspect of the hydrological cycle, 
flooding poses significant risks, including 
potential fatalities, population displacement, and 
environmental damages (Hagos et al., 2022). 
Some of the major contributing factors that cause 
flooding are heavy rainfall, ice jams, snowmelt, 
and changes in land use such as deforestation and 
urbanization (Rincón et al., 2018). Due to climate 
change, there is an increase in the frequency of 
river floods and flash floods that occur due to 
severe rains, snow melting, or dam collapse 
(Ardalan et al., 2009; Hosseini et al., 2020; 
Sharifi et al., 2012; Andaryani et al., 2021). This 
may be aggravated by the growing population 
along the river basins which could lead to a 
gradual decline in the land cover and increase in 
the sediment supply to the water bodies (Ahmed 

et al., 2024).  
Floods have become one of the most severe 

catastrophes compared to any other form of 
natural disaster. It affects the greatest number of 
individuals around the world (Ghosh et al., 2023) 
with the developing nations facing an increased 
risks (Singha et al., 2024) and suffering a much 
greater impact on their Gross Domestic Product 
(Ardalan et al., 2009). In 2021, in a single year, 
there were 206 major floods recorded in the 
world that affected 29.2 million people and 4393 
deaths (Maharjan et al., 2024). In Bhutan, several 
flooding events due to the glacial lake outburst 
floods and surface runoff during monsoon are 
common occurrences. The frequency of major 
flood events in Bhutan has been increasing, with 
over 60 major floods occurring between 1968 
and 2016 (NCHM, 2018). The flood events that 
occurred within the Punatsangchhu river basin in 
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1968, 1987, and 1994 were due to the GLOFs 
event and the highest flood events occurred 
during the monsoon seasons causing 
infrastructure damage and economic loss (Tempa, 
2022). Additionally, a recent flash flood event at 
Toorsa, Phuentsholing caused severe damage to 
the infrastructure nearby and the property (BBS, 
2023). Therefore, there is an urgent need to 
establish an effective mitigative flood 
management strategies in this mountainous 
nation. One of the tools commonly used to 
support decision-making in risk management, to 
assist in implementing effective mitigative 
strategies for the floods and guide sustainable 
land use planning in high-risk areas is Flood 
Susceptibility Mapping (FSM) (Vojtek & 
Vojteková, 2019). 

FSM is the vital process of identifying areas 
that are prone to flooding by providing critical 
data for disaster preparedness and mitigation 
efforts (Vojtek & Vojteková, 2019). FSM 
involves analyzing the physical characteristics of 
the topography, such as land use and land cover, 
slope, elevation, and soil type to identify flood-
prone regions (Lee & Kim, 2021). With the 
change in the climate and the rising of sea levels, 
an accurate FSM is crucial to mitigate the 
environmental, socio-economic impacts of the 
flood. Some of the methods employed in FSM 
are Multiple Criteria Decision Models (MCDM) 
such as Shannon Entropy model and Criteria 
Importance Through Intercriteria Correlation 
(CRITIC).  

The Shannon Entropy model proposed in 
1948 is a bivariate statistical method used to 
quantify disorder in thermodynamic systems 
which is used to assess flood vulnerability 
(Sharma et al., 2024). This approach evaluates 
the distribution of various explanatory variables 
and its level of contribution in creating the most 
favorable conditions for flood inundation 
occurrences. The higher value of entropy value 
will show that there is more randomness and vice 
versa (Arora et al., 2021). 

CRITIC is a technique that is used to 
calculate the objective weights' relative 
importance in MCDM methods (Diakoulaki et al., 
1995). This technique, termed by Diakoulaki, 
Mavrotas, and Papayannakis in 1995 is an 
efficient tool for determining the weights of the 
attributes. This method considers the standard 
deviation of each criterion to capture the 
variability of the data and considers the 
correlation between criteria to understand their 
redundancy which is different compared to 

Shannon Entropy where only the variability is 
considered (Krishnan et al., 2021). One of the 
advantages of using this method is that while 
assigning the weights, CRITIC will need to only 
analyze the data and draw all its conclusions to 
assign the weights from the data provided to it. 
So, the efficiency of this method will rely 
primarily on the quality of the data provided. 
Additionally, the use of Machine Learning (ML 
algorithms is increasing over the years for the 
flood risk assessment due to its effectiveness of 
learning the relationships (Demissie et al., 2024). 
The random forest (RF) and support vector 
machine (SVM) are the two ML algorithms that 
will be used for development of FSM for Toorsa 
and Pasakha. Area Under Receiver Operating 
Characteristic Curve will be used for assessing 
the model accuracy. 
The aim of the current study is to assess the 
usefulness of Multi-Criteria Decision-Making 
(MCDM) and Machine Learning (ML) 
techniques for the development of FSM. A 
detailed susceptibility map will be produced by 
utilizing the most accurate outputs. This may be 
used to enhance flood management strategies and 
improve disaster preparedness. 

2. STUDY AREA  

Phuentsholing, situated in the southern part of the 
country, is highly susceptible to flooding due to 
its geographical location and the presence of 
numerous tributaries contributing to the 
hydrology of the region. These tributaries, 
combined with the intense monsoon rainfall, 
make the area more vulnerable to flash floods. 
The maximum rainfall of 495.3 mm recorded in 
the Phuentsholing area, as per National Centre 
for Hydrology and Meteorology (NCHM), 
occurred on August 2, 2000. In the current study, 
two key areas of Amo Chu Basin and Pasakha 
Basin were considered.  

 
Fig. 1: Study Area of Amochu River basin 
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Amochu basin (Fig.1) encompasses an area 
of 649.98 km2 with Amochu (Toorsa River) as 
the principal river. It is subject to flooding events 
mostly during the monsoon season. The recent 
flash flood on 13 July 2023 affected 6 NHDCL 
housing units and 3 other private buildings 
causing major property losses and damage to 
infrastructure.  
 The second basin (Fig. 2) is considered in 
Pasakha encompassing an area of 72.01 km2. 
Two major rivers in the basin are Barsa River and 
Singye chu. The Barsa River has been subjected 
to a number of floods with resulting damages to 
several residential areas, power lines, and 
industries in the past (Dorji, 2022). Singye River 
is less frequently subjected to flood even during 
the rainy season. 

 
Fig.2: Study Area of Pasakha River basin 

3. METHODOLOGY 

The methodology flow chart in Fig. 3 provides a 
brief overview of the procedure of the study. The 
data on slope, soil type, elevation, LULC, TWI 
and Rainfall are applied in the study. Models are 
developed using both MCDM and ML methods. 
Validation is done using Area Under Curve 
method.  

 
 

Fig.3: Methodology chart 

3.1  Factors Influencing Flooding 

The following factors that contribute to the flood 
for the study area for the accurate flood 
susceptibility mapping were considered: 
• Slope 
Steeper slopes result in faster runoff, which can 
increase the likelihood of flooding and contribute 
to flash floods. Conversely, flatter areas with low 
slopes may experience water stagnation, 
eventually leading to flooding overtime. The 
maximum slope is 71.23 in Toorsa whereas a 
maximum value of 66.88 as given in Fig. 4. 

 

 
Fig. 4: Slope map (a) Amochu and (b) Pasakha 

• Rainfall  
Rainfall is a crucial factor that influence floods at 
a particular place. The daily rainfall data was 
extracted from the center for hydrometeorology 
and remote sensing (CHRS) website that has easy 
access to satellite-based precipitation for the year 
2024. The thematic layers for the rainfall 
extracted for the year 2024 are shown in Fig. 5 
below. 

a 

b 
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Fig. 5: Rainfall map (a) Amochu and (b) Pasakha 

• Elevation  
Areas at higher elevations are generally less 
susceptible to flooding, while lower-elevation 
regions are more susceptible. Low-lying areas 
often face recurrent flooding, especially during 
heavy rainfall, highlighting elevation as a key 
factor influencing flood risk. (Veerappan & 
Sumaira, 2020). The elevation maps of the study 
area given in Fig. 6 depict an elevation variation 
from 163 m to 3803 m in the basins.  

 

 
Fig. 6: Elevation map (a) Amochu and (b) Pasakha 

• Land use and Land cover 
Build areas with impermeable surfaces, such as 
roads and buildings, experience higher runoff, 
making them more susceptible to flooding. In 
contrast, areas with forests or natural vegetation 
absorb more rainfall, lowering flood 
susceptibility (Shafapour et al., 2017). The upper 
reaches of both the basins are largely forested 
areas. Percent built up area is higher in Pasakha 
as shown in Fig. 7.  

 

Fig. 7: LULC map (a) Amochu and (b) Pasakha 
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• Soil Type  
The permeability of the soil plays a very 
important role in flood susceptibility. Highly 
permeable soils allow water to infiltrate more 
easily, decreasing the risk of flooding, whereas 
less permeable soils can cause surface runoff and 
increase flood risks (Mojaddadi et al. 2017). 
Dystric Cambisols dominates in both the basins 
with skeletic Cambisols. 

 

 
Fig. 8: Soil map of (a) Amochu and (b)Pasakha 

• Topographic Wetness Index (TWI) 
It is the numerical indicator that represents the 
spatial distribution of elements like soil moisture, 
water table depth and the soil wetness. The 
higher the value of the TWI, the higher the 
influence of flooding will be. 

 

 
Fig .9: TWI map (a) Amochu and (b)Pasakha 

The highest TWI values are 12.23 and 7.05 for 
Amochu and Pasakha area respectively as shown 
in Fig.. 9. 

3.2  Shannon Entropy Model  

In Shannon Entropy Model, the total number of 
points and the number of points within the 
mentioned range of each factor were determined 
and tabulated. For each range or the class of 
factors the probability density or the normalized 
probability is determined by using the formula: 

𝑃! =
𝑁𝑜. 𝑜𝑓	𝑝𝑜𝑖𝑛𝑡𝑠	𝑖𝑛	𝑒𝑎𝑐ℎ	𝑐𝑙𝑎𝑠𝑠	𝑟𝑎𝑛𝑔𝑒

𝑇𝑜𝑡𝑎𝑙	𝑛𝑢𝑚𝑏𝑒𝑟	𝑜𝑓	𝑝𝑜𝑖𝑛𝑡𝑠	  

Then, the Entropy value for each factor is 
evaluated and maximum entropy is also 
calculated. 

𝐻" =9𝑃!"

#"

!

× 𝐿𝑜𝑔$𝑃!" 

𝐻!"#$ =	 𝑙𝑜𝑔%𝑆! 
Where, Pi = Probability density 

Hi & Hjmax = Entropy Value  
Sj = Number of Classes or range  

The Information Coefficient (Ij) and the resultant 
weight value (Wj) is then calculated by using the 
formula: 

𝐼" =
	𝐻"%&'	 −𝐻"
𝐻"%&'	

 

𝑊" = 𝐼" × 𝑃! 

3.3  Criteria Importance through 
Intercriteria Correlation (CRITIC) 

In this model, the data used in Shannon Entropy 
model is also used. Relevant numerical values 
were assigned to the Soil and Land Use Land 
Cover. The min-max normalization method was 
used to standardize the data as all the parameters 
need to be on a comparable scale using the 

b 
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equation: 

𝑍 =
𝑋 − 	𝑚𝑒𝑎𝑛(𝑋)

𝑠𝑡𝑑(𝑋)  

After computing the standard deviation for 
each criterion and the correlation matrix, the 
CRITIC weights was calculated using the 
equation below. 

𝑤𝑗	 = 	
𝜎𝑗(1 − 𝛴𝐶𝑜𝑟𝑟𝑒𝑙𝑎𝑡𝑖𝑜𝑛𝑠	𝑜𝑓	𝑗)
𝛴𝜎(1 − 𝛴𝐶𝑜𝑟𝑟𝑒𝑙𝑎𝑡𝑖𝑜𝑛𝑠)  

Where, wj= weight of criterion 
 𝜎𝑗=standard deviation of criterion  

3.4  Machine Learning Algorithms  

Two ML algorithms, the Random Forest (RF) 
and Support Vector Machine (SVM) were used 
for generating the FSM for the two study sites. 
The RF algorithms are supervised learning and 
most used for the FSM (Seleem et al., 2022). The 
method divides the input dataset through 
bootstrap sampling into multiple subsets while 
producing a decision tree for each section. The 
prediction process depends on a collective 
decision derived from all trees through voting to 
produce more reliable results and minimize 
fitting errors. 

SVM is a supervised machine learning which 
creates a hyperplane that separates the flood and 
non-flooded points in the flood susceptibility 
mapping (Seleem et al., 2022). SVM functions 
create the largest possible separation between 
classes through the analysis of vital data points 
which it identifies as support vectors. SVM 
employs kernel functions to create a non-linear 
transformation that separates unclassifiable data 
into distinct dimensions for boundary definition. 
Of the four types of kernel functions linear, radial 
basis function, sigmoid kernel and polynomial 
kernel, radial basis function was incorporated in 
the present study as it has high accuracy. 

4. RESULTS AND DISCUSSION 

4.1 Shannon Entropy Method 

For FSM based on the Shannon entropy 
approach, the six factors were assigned weights 
based on their contribution to the occurrence of 
flood. The results of the Shannon Entropy Model 
analysis show that the most significant factors are 
Soil type and LULC in both the catchments as 
shown in Table 1. 

Using the weights obtained, the weighted 
overlay method was used to generate the flood 
susceptibility map. Flood susceptibility maps 

(Fig. 12) were then generated using the weights 
obtained from Shannon Entropy using the 
Weighted-overlay tool from ArcMap. 

Table 1: Shannon Entropy weights 

SN Factors 
Weights 

Amochu Pasakha 
1 Slope 0.09 0.05 
2 Elevation 0.05 0.06 
3 Rainfall 0.03 0.14 
4 TWI 0.08 0.07 
5 Soil 0.37 0.39 
6 LULC 0.38 0.29 

4.2  CRITIC method 

In this method based on the weights, the critical 
factors for the Amochu area are elevation and 
rainfall, whereas TWI is the most significant 
factors as shown in Table 2.  

Table 2: CRITIC weights for the two study areas 

S
N Factors 

Weights 
Amochu Pasakha 

1 Slope 0.19 0.13 
2 Elevation 0.26 0.16 
3 Rainfall 0.26 0.18 
4 TWI 0.24 0.2 
5 Soil 0.03 0.18 
6 LULC 0.02 0.15 

The weights derived from the CRITIC method 
were then used to develop the FSM as shown in 
Fig. 12.  
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Fig. 10: FSM from Shannon Entropy Weight for 
(a)Amochu and (b) Pasakha 

 

 
Fig. 11: FSM from CRITIC Weight (a) Amochu and 

(b) Pasakha 

4.3  Random Forest method 

Based on the RF model, feature importance was 
identified, and the main factors that determine 
the occurrence of flooding were deduced. In 
Pasakha, the Topographic Wetness Index was 
established as the leading factor, whereas, in 
Amochu the elevation and slope were determined 
as the influential factors as shown in Fig. 12. 

 
Fig. 12: Feature importance in RF model 

4.4  Support Vector Machine method 

Similarly, using the SVM model, the feature 
importance was calculated to determine the most 
influential factor. For Pasakha, the topographic 
wetness index was the dominant factor whereas 
for Toorsa elevation contributes the most to 
flooding. 

 
Fig. 13: Feature importance in SVM model 

4.4  Model validation 
To assess the model accuracy, Receiver 
Operating Characteristic (ROC) curve was 
applied and Area Under Curve (AUC) score was 
computed. The ROC-AUC curves obtained for 
various methods are shown in Fig. 14 while the 
AUC values are given in Table 3. When AUC is 
equal to 1, it implies that prediction is perfect, an 
AUC value of 0.5 implies that the model simply 
does not perform better than random guessing. If 
the AUC is less than 0.5, it means that random 
guesses would perform better. 
 

 

b 
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Fig. 14: ROC-AUC for Amochu(left) and Pasakha 
(right) using (top to bottom) 1. Shannon Entropy 
method, 2. CRITIC method, 3. Random Forest 

Method and 4. SVM method 

Table 3: ROC-AUC values for various models 

SN Methods 
ROC-AUC values 

Amochu Pasakha 

1 Shannon 
Entropy Method 0.61 0.21 

2 CRITIC method 0.3485 0.5477 

3 Random Forest 0.98 0.98 

4 Support vector 
Machine 0.96 0.97 

 

 
Fig. 15: Final FSM of (a) Amochu and (b)Pasakha 

From Table 3 above, the highest value of 
AUC was obtained for RF model with a value of 
0.98. Because of its high predictive accuracy, the 
RF model was adopted for developing flood map 
decisions for each study region through its 
adoption for model construction. Therefore, the 
final flood susceptibility maps shown in Fig. 14 
were developed based on the RF model.  

5. CONCLUSION 

This project aimed to develop a FSM using 
different MCDM and ML algorithms. Flood 
susceptibility maps can be a crucial tool for 
reducing the risk of flooding as they allow 
decision makers to know the more dangerous 
areas to apply mitigation methods. Using 
multiple methods and comparing the results 
provides a more accurate map. In this project, 
after comparing four different methods, two of 
them MCDM and the other two ML, the 
superiority of the ML algorithms is evident.  

While the generation of the flood 
susceptibility map was successful for all the 
methods, upon validation, it is evident that the 
modern machine learning techniques outperform 
the MCDM methods. The data type used by all 
the study areas for each method has been kept the 
same for comparison. Proper extraction of data 
and data cleaning were executed in the same to 
prepare the data to be used by all the algorithms. 
The parameters slope, elevation, LULC, Soil, 
Rainfall, and Topographic Wetness Index were 
all given equal importance in the initial stage of 
the project to reduce any bias. 

The Shannon Entropy model resulted in 
AUC scores for Toorsa and Pasakha were 0.63 
and 0.21 respectively while the CRITIC method 
produced 0.3485 for Toorsa and 0.5477 for 
Pasakha. These values are very low compared to 
the AUC scores of the ML models in which the 
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RF model produced an accuracy score of 0.98 in 
both study areas while the SVM model produced 
0.96 for Toorsa and 0.97 for Pasakha. 

The reason for such a massive gap in 
accuracy score could be due to the methods of 
how each models handles and interprets the data. 
The two MCDM methods used only focused on 
the entropy within the dataset and the linear 
relationship between the factors while the 
machine learning algorithm are able to interpret 
the data in a non-linear manner considering 
multiple scenarios. A similar study conducted on 
Landslide Susceptibility Map by Jari et al., 2023 
also yielded similar results as this project. With 
the Random Forest algorithm being the model 
with the most accuracy, it has been adopted as the 
final Flood Susceptibility map for both study 
areas. 
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