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Abstract 

The phenomenon of Urban Heat Island (UHI) which is defined by increasing surface and air 

temperature in urban areas compared to surrounding areas is a growing concern due to several 

impacts. These includes heat stress, increase in energy consumption, degradation in environmental 

quality among others. Understanding the spatial and temporal variation of UHI will be useful in the 

planning of urban infrastructures. Therefore, the aim of the present study is to analyze the spatial 

and temporal variations of UHI in the College of Science and Technology (CST) from 2013 to 2023. 

The study analyzed the changes in Land Surface Temperature (LST), Normalized Difference 

Vegetation Index (NDVI) and Normalized Difference Built-up Index (NDBI). Air temperature was 

recorded at multiple locations at 8 AM, 12 PM and 4 PM over four days to examine the variation 

in air temperature due to the type of ground surface using handheld thermometer. The findings of 

the study show that there was a 3.5% increase in built-up area and a 17.14% decrease in vegetation 

cover during the 10-year period. The lower and upper limit of LST decreased over the decade which 

may be attributed to different seasonal timing. Normalized LST (NLST) analysis revealed that UHI 

zones expanded from 46.7% in 2013 to 53.3% in 2023.  A weakening negative correlation between 

NDVI and LST (from -0.65 to -0.52) and a strengthening positive correlation between NDBI and 

LST (from 0.58 to 0.60) were observed, highlighting the cooling effect of vegetation and the heat 

retention of built-up surfaces. Air temperature patterns showed consistently higher values over 

built-up areas and cooler, more stable temperatures over vegetated zones. The findings provide 

valuable insight into the extent of the UHI effect in CST. 
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1. INTRODUCTION 

Urbanization is an increase in the proportion of 

the population living in cities and the physical 

expansion of already existing urban centers 

(Tesfamariam et al., 2023). It is projected that 

almost 70% of the world’s population will reside 

in urban areas by the year 2050 (UN Department 

of Economic and Social Affairs, 2019). In the 

recent decades rapid urbanization has caused a 
series of environmental problems owing to 

increased impervious layers and this trend is 
continuing, especially in developing regions such 

as Asian and sub-Saharan African countries 

(Parnell & Walawege, 2011). The environmental 

impacts caused by urbanization would include 

increased air pollution, water pollution and one 

of the major impacts being urban heat island 

(UHI) effects. 

Urban Heat Island (UHI) refers to the higher 

temperatures experienced in urban areas 

compared to nearby non-urban areas (Rizwan et 

al., 2008). The UHI effect causes urban areas to 

experience higher temperatures than their rural 

counterparts due to various factors, including 

radiation absorption, decreased sky view, and 

increased anthropogenic heat sources (Roth et 

al., 1989). The diverse causes of UHI includes 

increased LST due to increase in population, high 

density of built spaces, impervious surface area 

(concrete structures, asphalt-paved roads and 

metal surfaces), reduced vegetation and air flow 

resulting in harmful climatic effects like less heat 

convections, evaporation, nocturnal radiation 

and albedo (Mahanta & Samuel, 2020). 

In the past decades more than 120,000 

people have died due to extreme heat in Europe 

and Russia, 75% of which occurred in cities 

(World Meteorological Organization, 2013); 

many thousands more were exposed to heat 

stress. Heat stress occurs when the human body’s 

means of regulating its internal temperature starts 

to fail (Verdonck et al., 2018). UHI effect 

impacts on the development of meteorological 

events such as increased precipitation, boosts 
energy demands, poses threats to environmental 

quality and long-term sustainability of localities, 

and potentially contributes to global warming 
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(Kikegawa et al., 2006). 

Numerous studies have explored the spatial and 

temporal dynamics of UHI, employing various 

methodologies to assess its impacts. Traditional 

approaches have relied heavily on satellite data, 

such as those from NASA (National Aeronautics 

and Space Administration) and NOAA (National 

Oceanic and Atmospheric Administration), to 

monitor LST and identify UHI hotspots (Gallo et 

al., 1993). LST can be measured directly or 

estimated through various remote sensing 

techniques such as Landsat, MODIS (Moderate 

Resolution Imaging Spectroradiometer), and 

ASTER (Advanced Spaceborne Thermal 

Emission and Reflection Radiometer) (Li et al., 

2023).  
UHI phenomena is divided into two distinct 

types: Surface Urban Heat Island (SUHI) and 

Atmospheric Urban Heat Island (AUHI). SUHI 

is the phenomenon where the urban areas emit 

higher land surface temperature compared to 

their rural surroundings. Factors which are 

contributing to SUHI include human activities, 

modification of land surfaces and replacement of 

vegetation by impervious surfaces (asphalt and 

concrete) which absorbs and retains more heat. 

The presence of infrastructures and buildings 

also reduces the flow of wind resulting in an 

increase of heat retention in urban areas (Oke, 

1982). 

AUHI is the phenomenon in which the air 

temperature in urban areas is higher compared to 

its surrounding rural areas. This occurs due to the 

high density of buildings and infrastructure 

which absorb and retain heat during the day and 

release slowly during the night. AUHI is further 

divided into two components: Canopy Layer 

Urban Heat Island (CLUHI) and Boundary Level 

Urban Heat Island (BLUHI). 

The phenomenon in which the temperature 

of the air within the urban canopy layer that 

extends from the ground surface to the top of the 

buildings and trees is higher compared to the 

surrounding rural areas is known as Canopy 

Layer Urban Heat Island (CLUHI). The urban 

canopy layer is directly influenced by the 

characteristics of the urban surfaces and 

morphology of the buildings and vegetation (Oke, 

1982). The effect of CLUHI is more noticeable 

at night because the urban area cools more slowly 

compared to rural areas. 

BLUHI refers to the phenomenon in which 

the air temperature in the urban boundary layer 

that extends from top of the canopy layer to the 

level which is unaffected by surface heating is 

higher compared to the rural areas (Oke, 1982). 

The boundary later can extend hundreds of 

meters above the ground and is influenced by the 

characteristics of urban surface, anthropogenic 

heat emissions and the complex urban 

morphology. The presence of buildings and other 

infrastructures in urban areas will disturb the 

natural wind patterns, resulting in a thicker and 

warmer boundary level compared to rural areas 

(Oke, 1982). 

In this study, the spatial and temporal 

patterns of Urban Heat Island (UHI) effects 

within the CST area are analyzed, focusing on 

both SUHI and AUHI phenomena. This analysis 

will be based on Land Use Land Cover (LULC), 

LST, and air temperature measurements. The 
specific objectives are to (1) generate LULC 

maps and assess temporal changes in land use (2) 

map LST and UHI to understand the spatial 

distribution of surface heat patterns; (3) analyze 

the relationship between LST, NDVI, NDBI and 

(4) determine and analyze air temperature 

variation. 

2. STUDY AREA 

The College of Science and Technology (CST) is 

located at approximately 26.85° N latitude and 

89.39° E longitude, at an altitude of about 434 

meters (1,424 feet) above sea level. It is 

characterized by a subtropical climatic zone, 

featuring distinct seasonal variations with warm 

summers and mild winters. Phuentsholing 

receives approximately 500-100 mm rainfall 

annually, primarily during the monsoon season 

from June to September (Phuentsholing 

Thromde, 2013).  

3. METHODOLOGY 

3.1. Data Collection 

a. Landsat Images 

Landsat is a series of Earth-observing satellite 

missions jointly managed by NASA and the 
United States Geological Survey (USGS). 

Although Landsat images can be freely 

downloaded from the United States Geological 

Survey (USGS) Earth Explorer for free, we were 

not able to find Landsat images taken on same 

day of the year. The Landsat images with a 

spatial resolution of 30 meters were selected 

from Landsat 8 with cloud cover less than 10 %. 

Even though image selected on 9th November, 

2023 has 26.18 % cloud cover, the cloud does not 

cover the study area. This date was selected due 

to its proximity to 12 October 2013 as shown in 
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Table 1. 

Table 1: The Landsat data used in the study. 

Date Path Row Cloud cover 

12-10-2013 138 41 3.52 

09-11-2023 138 41 26.18 

b. Air Temperature Measurement 

The measurement of air temperature was 

conducted to determine atmospheric urban heat 

island. The air temperature was measured using 

a handheld HT-9815 thermocouple thermometer, 

which has a least count of 0.1°C. The location of 

temperature measurement points was spread 

across the study area, encompassing all the 

different types of ground surface as shown in Fig. 

1. The points 1, 3, 8 and 10 fall under built-up 

land whereas points 2, 7, 9 and 11 is under 

vegetation land type. The points 4 and 5 is under 

barren land type while the point 6 fall under 

waterbodies. 

 

Fig. 1: Location of air temperature measurement 

The thermometer was positioned at standard 

meteorological heights, typically between 1.5 to 

2 meters above ground level while taking 

readings. This height ensures that the 

temperature data is consistent with established 

measurement protocols and minimizes the 

impact of ground-level effects that could distort 

the data (Rivera et al., 2023). 
The collection of air temperature was done 

at 8 AM, 12 PM and 4PM. The timing was 

chosen based on the strength of the solar 

radiation in the study area. The early morning 

reading at 8 AM provides a baseline temperature 

before the sun's intensity reaches its maximum. 

The midday reading at 12 PM corresponds to the 

peak solar radiation period, when temperatures 

are expected to be at their highest. The late 

afternoon reading at 4 PM captures the 
temperature as solar radiation begins to decline, 

allowing for observation of temperature trends 

after the peak period. The collection of 

temperature across the study area was completed 

within 30 minutes. By collecting data at these 

specific times, the study aims to effectively 

capture the diurnal temperature variations 

influenced by solar radiation and identify 

potential UHI effects. 

3.2. Data preparation and analysis 

a. Preprocessing 

The Landsat satellite records the energy reflected 

by the land and stores them as Digital Number 

(DN). DN is a variable assigned to a pixel in the 

form of a binary integer in the range of 0 to 4095 

for Landsat 8. The raw data recorded by the 

sensor includes the radiation reflected from the 

surface, radiation that bounces in from 

neighboring pixels and the radiation reflected 

from clouds. The DN will not show the true 

surface temperature due to the disruption caused 

by the atmosphere and method of recording the 

data in the satellite. Therefore, the following 

steps are standard processing for TIRS band 10 

before computing land surface temperature.  

Conversion of DN to Top of Atmosphere (TOA) 

spectral radiance  

Since DN cannot directly produce the 

temperature value, it needs to be converted to 

spectral radiance. According to Avdan & 

Jovanovska (2016) the top of atmosphere 

spectral radiance (L 𝜆 ) is calculated using 

equation 1. 

𝐿𝜆 =  𝑀𝐿 ∗ 𝑄𝑐𝑎𝑙 + 𝐴𝐿                   (1) 

Where 𝐿𝜆  is the TOA spectral radiance 

( 𝑊𝑎𝑡𝑡𝑠/(𝑚2 ∗ 𝑠𝑟𝑎𝑑 ∗ 𝜇𝑚) ); 𝑀𝐿  is the band 

specific multiplicative rescaling factor from the 

metadata (radiance_multi_ban_x, where x is the 

band number), 𝑄𝑐𝑎𝑙  is the quantized and 

calibrated standard product pixel values (DN) 

which is band 10 (thermal band) for Landsat 8 

and AL is the band specific additive rescaling 

factor from the metadata  (radiance_add_band_x, 

where x is the band number) 

Conversion of TOA spectral radiance to At-

Sensor Temperature (Kelvin)  

The data need to be converted to brightness 

temperature using equation 2 (Avdan & 

Jovanovska, 2016). 

𝑇𝐾 = 𝐾2/(𝑙𝑛  (
𝐾1

𝐿𝜆
)  + 1)           (2) 

where 𝑇𝐾  is the At-sensor Temperature 
(K); K1 and K2 are band‐specific thermal 

conversion constants from the metadata (K1 or 
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K2 _constant_band_x, where x is the thermal 

band number).  

Conversion of temperature in Celsius 

The result obtained in step 2 is in Kelvin and is 

changed into Celsius using equation 3. 

𝑇𝐶 = 𝑇𝐾 − 273.15                (3) 

where 𝑇𝐶  is the At-sensor Temperature 

(°𝐶). 

b. Land Surface Temperature (LST) and 

Normalized LST computation 

The Land Surface Temperature is calculated 

using the following steps: 

Generation of Normalized Difference 

Vegetation Index (NDVI). 

The NDVI assists in detecting the vegetated areas 
and evaluating the vegetation status (Cetin et al., 

2024). The visible and near-infrared bands were 

used for calculating NDVI (Avdan & 

Jovanovska, 2016). The NDVI can be used to 

compute emissivity of the soil and vegetation. It 

can be computed using equation 4. 

𝑁𝐷𝑉𝐼 = (𝑁𝐼𝑅 − 𝑅𝐸𝐷)/(𝑁𝐼𝑅 + 𝑅𝐸𝐷)       (4) 

where 𝑁𝐼𝑅 is the near-infrared band (band 

5) and 𝑅𝐸𝐷 is the red band (band 4).  

Computation of Vegetation Proportion (PV)  

The vegetation proportion is highly related to 

NDVI and emissivity. It is calculated using 

equation 5. 

𝑃𝑉 =  (
(𝑁𝐷𝑉𝐼 − 𝑁𝐷𝑉𝐼𝑚𝑖𝑛)

(𝑁𝐷𝑉𝐼𝑚𝑎𝑥 −  𝑁𝐷𝑉𝐼𝑚𝑖𝑛)
)

1
2          (5) 

where 𝑁𝐷𝑉𝐼𝑚𝑖𝑛  and 𝑁𝐷𝑉𝐼𝑚𝑎𝑥 are the minimum 

and maximum values obtained in the 𝑁𝐷𝑉𝐼 

calculation respectively.  

Emissivity estimation  

Since the land surface emissivity is a 

proportionality factor that scales blackbody 

radiance to predict emitted radiance, it must be 

computed to estimate LST (Avdan & 

Jovanovska, 2016). De Almeida et al. (2021) 

suggested equation 6 to estimate emissivity (𝐸).  

𝐸 = 0.004 ∗ 𝑃𝑉 + 0.986          (6) 

Computation of LST 

The LST can be computed using equation 7 

(Avdan & Jovanovska, 2016).  

𝐿𝑆𝑇 = (𝑇𝐶/(1 + (𝜆 ∗
𝑇𝐶

𝜌
) ∗ 𝑙𝑛 (𝐸)        (7) 

Where 𝐿𝑆𝑇  is the temperature, with 

correction by emissivity ( °𝐶 ); 𝐿𝐶  is the 

temperature of the brightness at the sensor (°𝐶); 

𝜆 is the wavelength of the emitted radiance; 𝐸 is 

the emissivity; 𝜌  is which is deduced from 

equation 8. 

𝜌 = ℎ 
𝑐

𝜎
= (1.428 ∗  10−2 𝑚𝑘)        (8) 

Where 𝜎  is the Boltzmann constant ( 1.38 ∗
 10−23 𝐽/𝐾 ); ℎ  is Planck’s constant ( 6.626 ∗
 10−34 𝐽𝑠), and 𝑐  is the speed of light (2998 ∗
 108 𝑚/𝑠). 

Normalized Land Surface Temperature (NLST) 

It is not appropriate to directly compare LST due 

to seasonal variation and inter-annual climatic 

variability. Therefore, LST maps need to be 
normalized using equation 9 before conducting 

quantitative analysis (Yang et al., 2017). 

𝑁𝐿𝑆𝑇 =
𝐿𝑆𝑇𝑖 − 𝐿𝑆𝑇𝑚𝑖𝑛

𝐿𝑆𝑇𝑚𝑎𝑥 − 𝐿𝑆𝑇𝑚𝑖𝑛
             (9) 

Where 𝑁𝐿𝑆𝑇  is the normalized LST value of 

pixel 𝑖; 𝐿𝑆𝑇𝑖  is the initial LST of pixel 𝑖; 𝐿𝑆𝑇𝑚𝑎𝑥 

and 𝐿𝑆𝑇𝑚𝑖𝑛  are the maximum and minimum 

LST respectively. 

3.3. Normalized Difference Built-up Index 

(NDBI) 

The NDBI is an essential index to detect built-up 

areas. It is obtained by dividing the difference 

between the spectral reflectance of short-wave 

infrared (SWIR) and NIR (Near Infrared) band 

values by their sum (Cetin et al., 2024). NDVI 

values range from +1 to -1 where positive value 

indicate built-up areas and negative value 

indicate non-urban areas. It is calculated using 

the formula in equation 9.  

𝑁𝐷𝐵𝐼 =
(𝑆𝑊𝐼𝑅 𝐵𝐴𝑁𝐷 − 𝑁𝐼𝑅 𝐵𝐴𝑁𝐷)

(𝑆𝑊𝐼𝑅 𝐵𝐴𝑁𝐷 + 𝑁𝐼𝑅 𝐵𝐴𝑁𝐷)
  … (9) 

Where SWIR and NIR are the Shortwave 

Infrared and Near-Infrared band respectively. 

3.4. Land Use Land Cover (LULC) 

Land cover represents the physical and natural 

characteristics of the Earth's surface, including 

vegetation, soil, water, and other elements. In 

contrast, land use refers to the human alterations 

of land cover for purposes such as industry, 

settlement, and commerce (Kaul & Sopan, 2012). 

To understand the spatial variations in land 

cover and land use, LULC maps are prepared by 

manually digitizing the land cover due to small 

study area and coarse spatial resolution of 

Landsat. This process involves creating a 

shapefile of the study area and classifying it into 
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four primary land classes: Built-up (urban areas, 

commercial zones, roads, pavements, and other 

man-made structures), Vegetation (forests, 

agricultural fields, parks, grasslands, and 

meadows), Barren (sand, gravel, rocks, and 

riverbanks), and Water (rivers, lakes, and 

streams).  

3.5. LULC validation 

To validate the LULC maps, their accuracy is 

assessed by comparing the land classes identified 

on the maps with the actual land classes observed 

in the field. This process involves randomly 

selecting multiple points from the LULC maps, 

recording their coordinates, and inputting these 

coordinates into Google Earth Pro. We have used 

historical image which are obtained in Google 

Earth Pro. The land classifications observed in 

the high-resolution satellite images from Google 

Earth Pro are then compared with those on the 

LULC maps using confusion matrix. This 

comparison aims to determine the accuracy of the 

land classifications by evaluating the proportion 

of correctly predicted land types, thus ensuring 

the reliability of the LULC maps. 

4. RESULT AND DISCUSSION 

4.1. Land use land cover dynamics 

The Table 2 and 3 indicates that from 2013 to 

2023, the built-up area increased from 16,885 m² 

to 25,607 m², an increase of 3.5 % as percent of 

the total area. This could be due to the 

construction of the convention hall, hostel, and 

other land development activities. On the other 

hand, the vegetation and barren land areas has 

changed significantly, with vegetation 

decreasing by 17.13% and barren land increasing 

by 13.49%. Water bodies, which were not 

recorded in 2013, was found to have 300.95 m² 

in 2023 as shown in Table 3. This increase is due 
to the formation or identification of a pond in the 

study area. The location of each LULC classes in 
2013 and 2023 are shown in Fig. 2 and 3 

respectively.  

Table 2: LULC classification for 2013 and 2023 

Class 2013 2023 

Area 

(𝑚2) 

Area 

(%) 

Area 

(𝑚2) 

Area 

(%) 

Built-up 16,885 9.62 25,607 13.12 

Vegetation 124,46

5 

70.92 104,97

3 

53.78 

Barren 34,160 19.46 64,312 32.95 

Water - - 301 0.15 

Table 3: LULC Changes from 2013 to 2023 

Class 
Change 

Area (𝑚2) Area (%) 

Built-up +8721.72 +3.50% 

Vegetation -19,492.06 -17.14% 

Barren +30,151.36 +13.49% 

Water +300.95 +0.15% 

 

Fig. 2: LULC map of 2013 

 

Fig. 3: LULC map of 2023 

The point sampling method was used for 

assessing the assessment of the LULC maps for 

the year 2013 and 2023. A total of 120 points 

were selected for each year, proportionately 

distributed based on the percentage area of each 

land cover class as shown in Table 4. These 

points were then subjected to ground truthing and 

verification using field data and reference 

imagery, allowing for an effective comparison 

between the actual and classified land covers. 

Table 4: Sample point distribution 

Year Class Area (%) Points  

2013 

Barren 19.46 23 

Vegetation 70.91 85 

Built-up 9.62 12 

2023 

Barren 13.12 16 

Vegetation 53.78 65 

Built-up 32.95 37 
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To assess the classification performance of 

the LULC maps for the years 2013 and 2023, a 

point-based accuracy assessment was conducted 

using a stratified random sampling approach. A 

total of 120 sample points were selected for each 

year, proportionally distributed across land cover 

classes based on their area 

coverage. These points were verified 

through reference imagery. 

The overall classification accuracy of the 

LULC maps after a confusion matrix was 

85.65 % for 2013 and 93.33% for 2023, as 

summarized in Table 5. 

Table 5: Overall accuracy of LULC maps 

Year 
Correct 

Points 

Total 

Points 

Overall 

Accuracy (%) 

2013 103 120 85.65 

2023 112 120 93.33 

4.2. NDVI and NDBI result 

The NDVI and NDBI values were derived from 

Landsat with a spatial resolution of 30 x 30 

meters. Due to small size of the study area, the 

coarse resolution of the raster data resulted in a 

limited number of pixels covering the study area. 

This led to pixel misalignments as the pixel grid 

does not align perfectly with study area boundary. 

The Fig. 4 and 5 shows the NDVI maps of 

CST for year 2013 and 2023 respectively. The 

areas with dense vegetation and sparse 

vegetation are represented by higher NDVI value, 

whereas lower values suggest less productive 

zones such as waterbodies, built-up areas and 

baren lands (Ahmad et al., 2025). The higher 

intensity of green colour indicates high NDVI 

value while lower NDVI are represented by 

increasing intensity of red colour. The calculated 

NDVI value varies from 0.05 and 0.46 in year 

2013 while in year 2023 it varies from 0.09 to 

0.42.  

The high NDVI in 2013 are scattered across 

northeast and west of the study area whereas, the 

low NDVI are concentrated in the central area. In 

2023, low NDVI areas are spread evenly with 

decreasing high NDVI areas, indicating decline 

in vegetation health and density.  

 

Fig. 4: NDVI for 2013

 

Fig. 5: NDVI for 2023 

The Fig. 6 and 7 shows the NDVI maps of 

CST for year 2013 and 2023 respectively. High 

NDBI value represents built-up lands such as 

building and pavements and low NDVI value 

suggest presence of low-built up areas. The 

NDVI values for 2013 ranges from -0.27 to 0.17 

whereas in 2023, it ranges from -0.25 to 0.14. 

The high values of NDVI are indicated by higher 

intensity of purple colour in the map and vice 

versa. The distribution of high NDVI values 

exhibits similar pattern to that of low NDVI 

indicating the increase of built-up area from 2013 

to 2023. 

 

Fig. 6: NDBI for 2013 
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Fig. 7: NDBI for 2023 

4.3. Land surface temperature and urban 

heat island 

The spatial distribution of LST of CST during the 

year 2013 and 2023 are indicated by Fig. 8 and 9 

respectively. The color gradient form light to 

deep green represents cooler areas while light to 

dark red represents warmer locations. The 

estimated LST values ranged from 24.9 to 30°C 

in 2013 and 22.7 to 27.2°C in 2023. The decrease 

in the lower and upper limit of LST may be 

attribute to different seasonal timing. Even 

though both datasets are captured during the 

post-monsoon seasons, November (Landsat 

obtained for 2023) is generally cooler than 

October (Landsat obtained for 2013). As a 

reference, the National Center for Hydrology and 

Meteorology (NCHM) recorded a minimum and 

maximum air temperature of 24°C and 33°C on 

12 October 2013, and 16°C and 30.5°C on 9 

November 2023. However, this information is 

presented for context only and does not 

necessarily explain the variation in LST values. 

 

Fig. 8: LST for 2013 

 

Fig. 9: LST for 2023 

To account for seasonal variations and inter-

annual variability of atmospheric conditions, 

normalization of LST is necessary. We classified 

normalized LST (NLST) equally in five zones 

with temperature ranges given in Table 6.  

Table 6: Temperature range for NLST zones 

Zone  Temperature 

Very low temperature 0 ≤ NLST < 0.2 

Low temperature 0.2 ≤ NLST < 0.4 

Moderate temperature  (0.4 ≤ NLST < 0.6 

High temperature 0.6 ≤ NLST < 0.8 

Very high 0.8 ≤ NLST ≤ 1 

The area where NLST is greater than or 

equal to 0.6 and less or equal to 1.0 (0.6 ≤ NLST 

≤1.0) was defined as the UHI distribution zone 

(Xiong et al., 2012). Therefore, the combination 

of zone 4 and zone 5 was called the UHI 

distribution zone. 

The Fig. 10 and 11 shows the zones of 

NLST of CST in 2013 and 2023. In 2013, the 

zone 1, zone 2, zone 3, zone 4 and zone 5 covers 
7.55%, 20.28%, 25.47%, 29.25% and 17.45% of 

the total area respectively. The UHI zone which 

is the combination of zone 4 and 5 covers 46.75% 

of the area. While in 2023, the zone 1, zone 2, 

zone 3, zone 4 and zone 5 covers 10.38%, 

16.51%, 19.81%, 30.66% and 22.64% of the total 

area respectively. The UHI zone which is the 

combination of zone 4 and 5 covers 53.3 % of the 

area.  
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Fig. 10: NLST for 2013 

 

Fig. 11: NLST for 2023 

In a decade, the area of very low 

temperature (zone 1) has increased by 2.83 %, 

the low temperature zone (zone 2) and moderate 

temperature zone (zone 3) has decreased by 

3.77 % and 5.66 % respectively while high 

temperature zone (zone 4) and very high 

temperature zone (zone 5) has increased by 

1.41 % and 5.19 % respectively as indicated in 

Table 7. Overall, the UHI zone has increased by 

6.6 % over the decade.  

Table 7: NLST zone details in 2013 and 2023 

Zone 

2013 2023 
Change 

Area area 

𝑚2* % 𝑚2* % % 

1 14.4 7.55 19.8 10.38 2.83 

2 38.7 20.28 31.5 16.51 -3.77 

3 48.6 25.47 37.8 19.81 -5.66 

4 55.8 29.25 58.5 30.66 1.41 

5 33.3 17.45 43.2 22.64 5.19 

*Area is in thousand meters square 

The UHI zone (zone 4 and zone 5) are 

mostly located in the central area of CST in both 

year 2013 and 2023. These central areas include 
football ground, administration and academic 

buildings and hostel buildings. The two heat 

island in 2013 has combined into single large 

UHI zone in the 2023. 

4.4. Correlation Analysis of LST and NDVI 

and NDBI 

The Fig. 12 and 13 respectively shows the scatter 

plot between LST and NDVI for 2013 and 2023. 

From 2013 to 2023, the strength of the negative 

correlation between LST and NDVI decreased 

from -0.65 ( 𝑅2 = 0.4194)  to -0.52 ( 𝑅2 =
0.269) , indicating a weakening influence of 

vegetation on surface temperature moderation. 

 

Fig. 12: Regression result between LST and NDVI 

in 2013 

 

Fig. 13: Regression result between LST and NDVI 

in 2023 

The Fig. 14 and 15 shows the scatter plot 

between LST and NDBI for 2013 and 2023 

respectively. From 2013 to 2023, the strength of 

the positive correlation between LST and NDBI 

increased from 0.58 ( 𝑅2 = 0.3351)  to 0.60 

(𝑅2 = 0.3556), suggesting a growing influence 

of built-up areas on surface temperature. 
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Fig. 14: Regression result between LST and NDBI in 

2013 

 

Fig. 15: Regression result between LST and NDBI in 

2023 

4.5. Variability of Air Temperature 

Inverse Distance Weighting (IDW) interpolation 

method was employed in GIS to estimate the air 

temperature at the unmeasured location based on 

known values at surrounding point of the study 

area. In IDW, points closer to the location being 

estimated have a greater influence on the 

interpolated value, while points farther away 

have less influence. This allows us to generate 

spatial heat maps as shown in Fig. 16. 

The heat hotspots were not uniform with 

different areas showing greater temperature at 

different times. However, the hotspots were 

consistently in the built-up area throughout the 

study period, indicating the influence of 

structures and their material on ambient 

temperature. The ambient temperatures around 

the vegetation areas are uniform and 
comparatively cool. Similarly, the air 

temperature over the barren land were not 

significantly hot. In built-up areas, there is a 

higher proportion of impervious surfaces (such 

as pavements, roads, and buildings) that absorb, 

and store heat more readily compared to natural 

surfaces. These areas also have darker surfaces 

that absorbs more solar radiation. 

5. CONCLUSION 

The study highlighted the presence and evolution 

of UHI effects on CST campus over a decade 

from 2013 to 2023. The LST analysis showed a 

spatial concentration of heat in built-up and 

barren areas. Although a reduction in the LST 

over the decade was observed, the UHI zones 

expanded from 46.75% in 2013 to 53.3% in 2023. 

The analysis revealed a weak negative 

correlation between NDVI and LST, 

emphasizing the role of vegetation in reducing 

surface temperatures. Meanwhile, the moderate 
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Fig. 16: Air Temperature (in °C) variation across different time 
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positive correlation between NDBI and LST 

demonstrated the heat-retaining characteristics of 

impervious surfaces. 

Air temperature data reinforced the findings, 

consistently identifying heat hotspots in built-up 

regions, particularly during peak solar radiation 

periods. Conversely, vegetation-covered areas 

exhibited relatively stable and cooler 

temperatures, reaffirming the moderating role of 

green spaces 

Overall, the findings indicate that increased 

construction activities at CST have contributed to 

an expansion in the spatial coverage of UHI 

zones. The findings highlight the necessity of 

preserving and integrating vegetation into the 

future development of the campus. Implementing 
measures like tree planting, vegetative buffer 

maintenance, and the use of permeable or 

reflective surface material can prove to be 

effective in mitigating UHI effects. This study 

provides localized information on how land use 

change at CST influences thermal patterns and 

can be utilized as a baseline to track the impact 

of future urbanization in comparable institutional 

or educational complexes in Bhutan. 
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