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Abstract  
Surface water is a primary source of drinking water in Bhutan. To ensure a reliable supply that 
meets both quality and quantity requirements, it is crucial to identify suitable sources. This study 
presents an integrated approach using Geographic Information Systems (GIS) and machine learning 
to identify potential surface water sources. Satellite imagery from Landsat-8 and Sentinel-2 was 
utilized to generate geospatial datasets. Five key variables influencing the spatio-temporal presence 
of water—rainfall, temperature, soil type, Normalized Difference Vegetation Index (NDVI), and 
topography were analyzed within a GIS environment. The Random Forest (RF) algorithm, known 
for its robustness in handling nonlinear and high-dimensional data, was employed to predict 
potential water sources. Model outputs were validated through field surveys and spectral analysis 
using the Normalized Difference Water Index (NDWI). The study identified 50 viable water source 
locations situated above 450 meters in elevation. The model achieved an area under the curve (AUC) 
score of 0.99, indicating a strong correlation between predicted and actual water sources. These 
results confirm that integrating machine learning with remote sensing and GIS is an effective 
approach for surface water resource planning in Bhutan's hilly terrain. 
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1. INTRODUCTION 
In natural resources management and 
environmental monitoring, Geographic 
Information System (GIS), Machine learning and 
Artificial Intelligence are commonly used tools. 
These tools are used for Landslide Susceptibility 
Assessment (Pasang and Kuicek 2020, Shazad et 
al., 2022), detection of Land Use Land Cover 
changes (Pasang et la, 2022) and its impacts 
(Mehra and Swain 2024, Kang et al.,2024), 
Urban Planning (Anwar et al., 2024) and 
mapping groundwater sources (Gyeltshen et al., 
2022). 

In the field of water resources management, 
the application varies from the use of Geographic 
Information Systems (GIS) and Remote Sensing 
techniques to delineate and map surface water 
bodies (Niu et al, 2022, Pan et al, 2020) and 
estimate water volume variations (Lin et al, 2020, 
Pimenta et al, 2024, Quang et al., 2021). It is also 
used in the assessment of water quality and 
treatment, energy management, and impact of 
climate change (Hernandez-Alpizar et al., 2024) 

For observation of surface water, water 
index-and threshold-based approaches are 

commonly used (Zhou et al., 2017). The 
normalized difference water index (NDWI), 
modified normalized difference water index 
(mNDWI) are widely used to define and improve 
water detection by using Near-Infrared (NIR) 
radiation and Middle-Infrared (MIR) 
respectively (Quang et al., 2021). Other water 
indices used in identifying the surface water 
bodies, includes: tasseled cap wetness index 
(TCW), Sum457, automated water extraction 
index (AWEI). Advances in satellite imagery and 
remote sensing enable processing of intricate 
environmental data.  

Further the integration of satellite images 
(Landsat-8 and Sentinel-2) and machine learning 
model are found to be useful to generate 
predictive maps of potential surface water and to 
process intricate environmental data to solve 
actual resource management issues (He et al., 
2024; Mohan et al., 2025; Zhu et al., 2022; 
Mohammed et al., 2023).  

Surface water sources, particularly springs 
and streams, are the primary sources of domestic 
water supply in Bhutan (Tariq et al.,2021). 
Despite the country's abundant water resources, 
with an annual per capita availability of 94,500 
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m3 (Yangzom and Choden, 2021), Bhutan faces 
significant challenges in ensuring reliable and 
equitable water access. These challenges are 
exacerbated by climate change and human 
activities, leading to spatio-temporal variations 
in water quantity and posing difficulties in 
identifying and locating water sources due to the 
country's rugged topography. In particular, the 
water supply system in Phuentsholing, managed 
by Phuentsholing Thromde, draws water from 
streams and rivers intakes of the upper reaches of 
the town as well as ground water sources. 
However, the water supply system faces several 
challenges including high seasonal variability, 
aging distribution networks, and growing 
demand. The instances of interrupted water 
supply are common occurrences affecting 
several households including the residents of the 
College of Science and Technology.   

With changes in the land use pattern, 
increasing human activities and climate change, 
drying up of water sources, changes in the water 
storage and water pollution (Lin et al, 2020) are 
expected in the catchment area of the 
Phuentsholing town. This will lead to further 
pressure on the already stressed water supply 
system of the town.   

Therefore, there is a need to find a 
sustainable solution to the water shortage 
particularly during the dry periods, by identifying 
reliable water sources such as streams, ponds, 
and ephemeral water bodies which is a critical 
step towards increasing water security in the 
region (Roy et al., 2020). However, thus far there 
has been no assessment carried out to determine 
the spatio-temporal location of the water sources 
in the area. Therefore, the aim of the study is to 
apply predictive analytics and machine learning 
(ML) to identify surface water sources in the 
broader zone of Phuentsholing by leveraging 
geospatial technologies.  

2. STUDY AREA  
Phuentsholing town, is an important commercial 
hub and gateway for trade with India and other 
trading partners. It is located in the southern 
Bhutan under Chukha District at approximately 
26.851°N and 89.388°E (Fig. 1) at an altitude of 
about 300 meters above sea level. 

The town is characterized by subtropical 
climate with heavy monsoon rain, complex 
topography, and intensively diversified land use 
pattern (National Land Commission Secretariat, 
2021). The town uses mainly the surface water 
sources for domestic water supply supplemented 

by groundwater sources. Two major river system 
are located within the vicinity of the town; 
Amochu runs along the periphery of the town 
while Omchu, a smaller tributary runs through 
the town.  

 
Fig. 1: Map Showing study area Phuentsholing 

within the district of Chukha in Bhutan 

Soil type in Phuentsholing dictates water 
retention, infiltration, and surface water body 
distribution. The region has diverse types of soil 
(Fig. 2), each with their own properties that affect 
hydrology. 

 
Fig. 2: Soil Map of study area showing Haptic 
Acrisols, haptic Alisols, Skeletal Cambisols and 

Eutric Cambisols 

The interplay between soil properties and 
topography significantly influences surface 
water dynamics in Phuentsholing. The region 
features diverse soil types distributed across 
varying landscapes, from the flat Indo-Bhutan 
border plains to undulating hills. Haptic Acrisols 
and Alisols dominate the humid zones. Both are 
acidic and clay-rich with low permeability, 
resulting in limited infiltration and increased 
surface runoff during heavy rainfall. Haptic 
Alisols, which contain higher concentrations of 
exchangeable aluminum, are particularly prone 
to nutrient depletion and poor groundwater 
recharge. 
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In contrast, Skeletic Cambisols, found 
predominantly on steep slopes, are shallow and 
coarse-textured. These soils allow rapid 
infiltration but possess low water storage 
capacity, contributing to high runoff and limited 
water retention. Eutric Cambisols, prevalent in 
valley bottoms and low-lying plains, are fertile 
and well-balanced in drainage and retention, 
making them well-suited to support seasonal 
streams, ponds, and localized water 
accumulation. 

These soil-topographic relationships 
demarcate distinct hydrological zones. Eutric 
Cambisols in the lowlands tend to form natural 
reservoirs, while Skeletic Cambisols on elevated 
slopes contribute to rapid drainage. Seasonal 
monsoonal rainfall intensifies these patterns: 
heavy rain temporarily saturates clayey soils like 
Acrisols, whereas prolonged dry spells quickly 
deplete su rface moisture in poorly retaining 
areas. 

Urbanization further alters these natural 
dynamics. Impervious surfaces, particularly in 
central Phuentsholing, reduce infiltration and 
increase dependency on engineered drainage 
systems. Conversely, vegetated areas enhance 
soil water retention, especially where Eutric 
Cambisols are present. These findings 
underscore the critical role of land use planning 
in maintaining water sustainability. 

Temperature changes also play a critical 
role, with high rates of evaporation in the hot pre-
monsoon period drying up the surface water 
resources, especially in Skeletic Cambisols 
regions.  

Understanding these complex interactions is 
crucial in addressing Phuentsholing's water 
shortage. By incorporating soil data, topography, 
and climatic data into machine learning models, 
it becomes possible to predict sustainable surface 
water sources for the entire district, beyond 
localized solutions for institutions like CST. This 
holistic approach can be employed to develop 
enhanced water management plans, ensuring 
long-term sustainability against shortages. 

3. MATERIALS AND METHOD  

The methodology employed to predict the spatial 
location of surface water sources in the 
Phuentsholing region based on remote sensing, 
geospatial analysis, and integration of machine 
learning is shown in Fig. 3.  

 
Fig. 3: Predictive Analysis workflow for surface 

water presence 

With reference to the Fig. 3, the methodology 
adopted involves collecting data (soil, 
temperature, rainfall, land use), preprocessing 
with GIS tools, and integrating features into a 
Random Forest model to generate a water 
prediction map. The map is validated through 
field visits and statistical techniques with 
refinements made to generate a spatially 
consistent and temporally valid surface water 
prediction map to support water resource 
planning and management in the region.  

3.1. Data Collection and Pre-processing  

Six key environmental and geospatial variables 
were selected for their relevance to surface water 
distribution: rain, temperature, soil, Normalized 
Difference Vegetation Index (NDVI), 
topography, and the Normalized Difference 
Water Index (NDWI). These variables are readily 
available from national and global datasets such 
as the Bhutan Meteorological Department, FAO 
soil data, and DEM-derived topography. Among 
them, NDWI is noteworthy as it utilizes spectral 
characteristics of satellite imagery to precisely 
detect water bodies by highlighting the contrast 
between green reflectance and near-infrared 
(NIR) values (Huang et al., 2018; Zhou et al., 
2017; Pan et al., 2020). 

The spatial and environmental data were 
gathered from 2023 to 2025 for a period of three 
years are shown in figures 5-8. To achieve 
precision and uniformity, NDWI and NDVI were 
derived from Sentinel-2 and Landsat-8 satellite 
images. Both NDWI and NDVI were selected on 
the basis of their sensitivity towards surface 
water and vegetation. Data were collected from 
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the dry season months of each year, i.e., January, 
February, November, and December. The 
months were chosen to capture more permanent 
surface water bodies, minimizing the effect of 
temporary flooding or seasonal water 
accumulation that occurs during the monsoon. 

Data processing was carried out in GIS 
platform to prepare, normalize, and spatially 
register the data sets. Randomly selected points 
(Fig. 4) were located throughout the 
Phuentsholing area to maximize spatial diversity 
and minimize sampling bias. At each station, 
reflectance values from the satellite data were 
used to find the NDWI and NDVI values. The 
NDWI was computed using the formula:  

NDWI =
(Green	 − 	NIR)
(Green	 + 	NIR) 

While NDVI was obtained using the following 
equation:  

NDVI =
(NIR	 − 	Red)
(NIR	 − Red)  

 
Fig. 4: Map showing 500 randomly picked points 

used for in analysis 

All data were pre-processed with standard 
pre-processing procedures including cloud 
masking, normalization, projection alignment, 
and raster-to-tabular conversion for machine 
learning purposes. Topographic factors were 
computed using Digital Elevation Models, and 
climatic data were extracted from national 
databases. Soil maps and vegetation were also 
included in the dataset. The result was an 
integrated geospatial database with a number of 
variables influencing the occurrence of surface 
water in the study area. 

 

 

 
Fig. 5. Sample NDVI Maps of (a) January 2023, (b) 

November 2024 and (c) January 2025 

 
Fig. 6: Annual temperature in °C in Phuentsholing 

from 2023-2025 
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Fig. 7: Sample NDWI Maps of (a) January 2023, (b) 

December 2024 and (c) January 2025 

 
Fig. 8: Annual rainfall data from 2023-2024 

3.2. Development of Random Forest Model 

Spatial data processed in the GIS platform was 
used for model development using the Random 
Forest algorithm. Random Forest was adopted as 
the primary modeling technique due to its 
effectiveness in handling high-dimensional 
datasets, resistance to overfitting, and robustness 
in capturing complex nonlinear relationships. 
Further, Random Forest is supported by other 
ensemble machine learning methods including 
Gradient Boosting and AdaBoost, which also 
undergo testing in order to be compared on a 
performance basis (Kathirvelu et al., 2023; 
Rahaman et al., 2023). Random Forest also 
provides insights into feature importance, 
enabling the identification of variables that 
contributed most significantly to the model’s 
predictions 

The model was trained on a merged dataset, 
where each observation represented a unique 
geographic location characterized by a set of 
environmental features and a binary indicator 
denoting the presence or absence of surface water. 
Key hyperparameters such as the number of trees, 
maximum tree depth, and minimum samples per 
split were specified and tuned to optimize model 
performance. 

To enhance model reliability and mitigate 
overfitting, the dataset was partitioned into 
training and validation sets using an 80:20 split. 
Additionally, five-fold cross-validation was 
employed on the training set to assess the 
model’s generalizability. In this process, the 
training data was divided into five equal subsets; 
in each iteration, the model was trained on four 
subsets and validated on the remaining one. This 
procedure was repeated five times, ensuring that 
each subset served as the validation set once. The 
results from all folds were averaged to evaluate 
overall model performance 
3.3. Model Validation 

Validation of the model's performance was 
conducted using a combination of statistical 
evaluation and field validation. Statistical 
validation was carried out by calculating the 
performance metrics such as accuracy, precision, 
recall, F1-score, and Area Under the Receiver 
Operating Characteristic Curve (AUC-ROC). 
These metrics were utilized to assess the 
performance of the model in correctly classifying 
the presence and absence of surface water across 
the validation dataset. 
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Field validation of estimated surface water 
locations was performed by comparing the 
locations with ground observations made 
through site visits in the Phuentsholing area. 
High surface water probability areas were 
mapped and assessed to validate the presence of 
water features. Hand-held GPS devices and 
mobile GIS applications were used to locate and 
note water features were used during the field 
visit. Where areas were not accessible, high-
resolution imagery available on platforms like 
Google Earth was used to visually detect water 
presence. 

4. RESULTS AND DISCUSSION 
The final predictive model identified 50 potential 
surface water bodies as shown in Error! 
Reference source not found.. These sites are 
located at an elevation above 450 meters, which 
is the reference elevation of Phuentsholing town. 
This elevation criterion was purposely applied to 
facilitate conveyance of water under gravity to 
the town area.  

 
Fig. 9: Map showing 50 predictive surface water 

bodies superimposed on the elevation layer 

The input parameters used in prediction 
model included rainfall, temperature, soil type, 
NDVI, NDWI, slope, and elevation. NDVI and 
NDWI indices were derived from Sentinel-2 and 
Landsat-8 satellite images, while the topographic 
and climatic variables were processed using 
Digital  Elevation Models and national 
meteorological data respectively.  

4.1 Model Validation (AUC Curve) 

The model scored an Area Under the Curve 
(AUC) of 0.99, signifying a high level of 
classification accuracy in discriminating between 
areas with and without surface water presence. 
Having an AUC value close to 1.0 means that the 
model is highly capable of ranking positive cases 
above negative cases. This high AUC value 

verifies the model as robust and credible in the 
context of surface water prediction. Therefore, 
the Random Forest model utilized in this study 
can be considered valid and effective for 
identifying prospective surface water sources for 
the Phuentsholing region. 

 
Fig. 10: The model achieved an Area Under the 
Curve (AUC) score of 0.99, indicating excellent 

classification accuracy. The steep rise near the y-
axis reflects a high true positive rate with minimal 

false positives, confirming the model's strong 
predictive capability 

4.2 Field Validation 

To validate the model’s predictions, a field visit 
was conducted to a site identified by the Random 
Forest model as having a high likelihood of 
surface water presence. The selected location, 
situated at coordinates 89.41740552° E and 
26.88614462° N and at an elevation above 450 
meters (Error! Reference source not found.), 
was accessible during the dry season. On-site 
verification confirmed the presence of surface 
water, aligning with the model’s prediction and 
supporting its reliability.  

 
Fig. 11: Figure showing field validation site. This is 

where the model selected as having high surface 
water occurrence probability 
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This in-field verification adds validity and 
consistency of the Random Forest model. While 
a single point was inspected in the field, the 
positive result confirms the model's suitability 
for application on more widespread similar 
terrain. 

 
Fig. 12: Field evidence confirms the presence of 
surface water at the site identified by the Random 

Forest model 

5. CONCLUSION 

This study investigated and substantiated the 
application and effectiveness of machine 
learning and geospatial technologies for 
delineating potential surface water sources in 
Phuentsholing region. With data-driven 
measurements, including NDWI, NDVI, 
elevation, rainfall, temperature, slope, and soil, 
the Random Forest model predicted 50 potential 
surface water locations above the elevation 
threshold of 300 meters. The predicted results 
were spatially confirmed by field observation 
and geospatial overlay, validating the robustness 
of the model 

This approach is distinct from other ongoing 
research in that it utilizes an ensemble learning 
model (Random Forest) with a high reputation 
for accuracy in handling nonlinear 
environmental data. Utilization of imagery from 
dry-season months (December, February, 
January, November) enhanced the model's 
performance in identifying more permanent 
surface water bodies free of seasonal bias 
induced by monsoon rains. Utilization of GIS 
with machine learning versus traditional field-
survey methods or purely hydrological models 
substantially reduced the demands of physical 
fieldwork while optimizing spatial coverage. The 
use of Sentinel-2 and Landsat-8 images added 
spectral precision to the classification process, 

especially through NDWI’s sensitivity to water 
reflectance. However, there were a few 
limitations. Satellite imagery on cloudy days still 
needed to be passed through cloud-masking 
processes, and dense canopy or shadowed 
topography may have obscured surface water 
features. While the model withstood statistical 
verification and field validation well, 
accessibility problems in certain locations 
limited complete on-site validation. In addition, 
due to resolution constraints in some of the 
datasets, smaller water bodies or ephemeral 
sources may have been missed or misclassified. 

For future research, the utilization of 
imagery of higher resolution or LiDAR-derived 
elevation models is recommended for more 
precise outcomes, especially in urbanized or 
forested regions. Expanding the extent of the 
model to account for seasonal variation through 
the inclusion of monsoon datasets can yield 
information on episodic or temporary water 
bodies. The inclusion of socio-economic 
indicators, such as land use patterns or 
population density, would also be beneficial to 
rank water supply development areas. This study 
provides a replicable and scalable model that can 
be duplicated in other water-scarce regions of 
Bhutan and beyond. 

The findings hold significant implications 
for Bhutan, which is increasingly water-deficient, 
especially in lowland urban centers like 
Phuentsholing. The use of geospatial intelligence 
in water resource planning provides a cost-
effective and scalable alternative to traditional 
survey methods. It provides policymakers and 
engineers implementing infrastructure and water 
supply development with timely, evidence-based 
recommendations. Having all the forecasted 
water sources above the elevation of the city also 
aligns with the realities of logistics of water 
collection and distribution. 

In the future, future studies can leverage the 
use of temporal analysis that tracks water 
availability on a seasonal basis. High-resolution 
spatial data, integration with socio-economic 
variables, and local stakeholder-based 
participatory GIS can render such models more 
viable and useful. This study gives a good 
platform for predictive water source 
identification and can inform long-term water 
security planning in Bhutan. 
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